Behavioural Portfolio Selection with Loss Control

Dr. Hanqing Jin

Mathematical Institute, University of Oxford
Oxford-Man Institute of Quantitative Finance

A joint work with Xun Yu Zhou and Song Zhang

6^{th} World Congress, Bachelier Finance Society
23^{rd} June, 2010, Toronto, Canada
Problem setting

- Financial market: complete market with time horizon $T < \infty$
 - Pricing density ρ: price of a contingent claim ξ is $E[\rho \xi]$
Problem setting

• Financial market: complete market with time horizon $T < \infty$
 ○ Pricing density ρ: price of a contingent claim ξ is $E[\rho \xi]$

• Investor: with behavioral preference
Problem setting

- Financial market: complete market with time horizon $T < \infty$
 - Pricing density ρ: price of a contingent claim ξ is $E[\rho \xi]$
- Investor: with behavioral preference
 - Compare terminal gain/loss against a given reference level B
Problem setting

- Financial market: complete market with time horizon $T < \infty$
 - Pricing density ρ: price of a contingent claim ξ is $E[\rho \xi]$
- Investor: with behavioral preference
 - Compare terminal gain/loss against a given reference level B
 - S-shaped utility $u(x) = u_+(x^+) - u_-(x^-)$
 - $u_\pm(\cdot)$ are concave, ↑
Problem setting

- Financial market: complete market with time horizon $T < \infty$
 - Pricing density ρ: price of a contingent claim ξ is $E[\rho \xi]$

- Investor: with behavioral preference
 - Compare terminal gain/loss against a given reference level B
 - S-shaped utility $u(x) = u_+(x^+) - u_-(x^-)$
 - $u_\pm(\cdot)$ are concave, \uparrow
 - Probability distortions $T_\pm(\cdot) : [0, 1] \mapsto [0, 1]$
 - $T_\pm \uparrow$, $T_\pm(0) = 0$, $T_\pm(1) = 1$
 - $T_\pm(p) > p$ for small p
Problem setting

- Behavioral criterion: for a r.v. Y,

$$V(Y) = \int_0^{+\infty} u(y) d[-T_+(P(Y \geq y))] + \int_{-\infty}^0 u(y) d[T_-(P(Y \leq y))]$$
Problem setting

- Behavioral criterion: for a r.v. Y,

$$V(Y) = \int_{0}^{+\infty} u(y)d[-T_+(P(Y \geq y))] + \int_{-\infty}^{0} u(y)d[T_-(P(Y \leq y))]$$

$$= \int_{0}^{+\infty} T_+(P(u_+(Y^+) \geq y))dy - \int_{0}^{+\infty} T_-(P(u_-(Y^-) \geq y))dy$$
Problem setting

- Behavioral criterion: for a r.v. Y,

$$V(Y) = \int_0^{+\infty} T_+(P(u_+(Y^+) \geq y))dy - \int_0^{+\infty} T_-(P(u_-(Y^-) \geq y))dy$$

$$= V_+(Y^+) - V_-(Y^-)$$
Problem setting

- Behavioral criterion: for a r.v. Y,

$$V(Y) = \int_0^{+\infty} T_+(P(u_+(Y^+) \geq y))dy - \int_0^{+\infty} T_-(P(u_-(Y^-) \geq y))dy$$

$$= V_+(Y^+) - V_-(Y^-)$$

- Investor’s problem

Maximize $V(X - B)$

s.t.

$$X \in A$$

$$E[X \rho] = x_0$$

where A is the set of admissible terminal wealths.
What is done

• Without probability distortions, the problem was widely studied, like Berkelaar, Kouwenberg and Post (2004)
What is done

- Without probability distortions, the problem was widely studied, like Berkelaar, Kouwenberg and Post (2004)
- With probability distortion, the problem is much more difficult
What is done

- Without probability distortions, the problem was widely studied, like Berkelaar, Kouwenberg and Post (2004)
- With probability distortion, the problem is much more difficult
 - Jin and Zhou (2008) solved the problem with
 \[A = \{ X : X \text{ is lower bounded} \} \]
What is done

• Without probability distortions, the problem was widely studied, like Berkelaar, Kouwenberg and Post (2004)

• With probability distortion, the problem is much more difficult
 ◦ Jin and Zhou (2008) solved the problem with
 \[A = \{ X : X \text{ is lower bounded} \} \]
 ◦ Optimal investment in Jin and Zhou has a deterministic loss in a bad market situation
What is done

- Without probability distortions, the problem was widely studied, like Berkelaar, Kouwenberg and Post (2004).
- With probability distortion, the problem is much more difficult.
 - Jin and Zhou (2008) solved the problem with:
 \[A = \{ X : X \text{ is lower bounded} \} \]
 - Optimal investment in Jin and Zhou has a deterministic loss in a bad market situation.
 - But the loss can be large enough to intrigue disasters, like bankruptcy.
What will we do

- Bankruptcy is not allowed in most market
- Investors may cut loss at some big loss
What will we do

- Bankruptcy is not allowed in most markets.
- Investors may cut losses at some big loss.
- In our problem,
 - Investors are risk-seeking for losses.
 - Motivate the investor to borrow money for risky investors.
What will we do

• Bankruptcy is not allowed in most market

• Investors may cut loss at some big loss

• In our problem,
 ◦ Investor are risk seeking for loss
 ◦ Motivate the investor to borrow money for risky investor
 ◦ Heavy loss may happen
 ◦ Bankruptcy probability is higher when the investor is more aggressive
What will we do

- Bankruptcy is not allowed in most market
- Investors may cut loss at some big loss
- In our problem,
 - Investor are risk seeking for loss
 - Motivate the investor to borrow money for risky investor
 - Heavy loss may happen
 - Bankruptcy probability is higher when the investor is more aggressive
- To prevent disaster, a constraint on loss is necessary
Problem with bounded loss

Maximize \(V(X - B) \)

\[
\begin{aligned}
\text{s.t.} & \quad X \geq B - L \\
& \quad E[X \rho] = x_0
\end{aligned}
\]

where \(L \) is an upper bound of loss.
Problem with bounded loss

Maximize \[V(X - B) \]

s.t. \[
\begin{aligned}
X &\geq B - L \\
E[X\rho] &= x_0
\end{aligned}
\]

where \(L \) is an upper bound of loss.

Suppose the reference is bounded. Rewrite the problem by changing variable \(\tilde{X} = X - B \),

Maximize \[V_+(\tilde{X}^+) - V_-(\tilde{X}^-) \]

s.t. \[
\begin{aligned}
\tilde{X} &\geq -L \\
E[\tilde{X}\rho] &= \tilde{x}_0 := x_0 - E[\rho B]
\end{aligned}
\]

where \[V_\pm(Y) = \int_0^{+\infty} T_\pm(P(u_\pm(y) \geq y))dy. \]
Splitting of the problem

- We use the same splitting from Jin and Zhou (2008)
- For any $c \in (\text{essinf} \rho, \text{esssup} \rho)$, $\tilde{x}_+ \geq \tilde{x}_0^+$, solve the following problems to get their value function $v_\pm(c, \tilde{x}_+)$
Splitting of the problem

- We use the same splitting from Jin and Zhou (2008)

- For any \(c \in (\text{essinf} \rho, \text{esssup} \rho) \), \(\tilde{x}_+ \geq \tilde{x}_0^+ \), solve the following problems to get their value function \(v_\pm(c, \tilde{x}_+) \)

\[
\max \quad V_+ (\tilde{X}_+)
\]

\[
\begin{align*}
\tilde{X}_+ & \geq 0 \\
\tilde{X} & = 0 \text{ when } \rho > c \\
E[\tilde{X}_+ \rho] & = \tilde{x}_+
\end{align*}
\]

(Positive Part Problem)
Splitting of the problem

- We use the same splitting from Jin and Zhou (2008)
- For any $c \in (\inf \rho, \sup \rho)$, $\tilde{x}_+ \geq \tilde{x}_0^+$, solve the following problems to get their value function $v_\pm(c, \tilde{x}_+)$

\[
\begin{align*}
\text{max} \quad & V_+(\tilde{X}_+) \\
\text{s.t.} \quad & \begin{cases}
\tilde{X}_+ \geq 0 \\
\tilde{X} = 0 \text{ when } \rho > c \\
E[\tilde{X}_+ \rho] = \tilde{x}_+
\end{cases}
\end{align*}
\]

(Positive Part Problem)

\[
\begin{align*}
\text{min} \quad & V_-(\tilde{X}_-) \\
\text{s.t.} \quad & \begin{cases}
\tilde{X}_- \in [0, L] \\
\tilde{X}_- = 0 \text{ when } \rho < c \\
E[\tilde{X}_- \rho] = \tilde{x}_+ - \tilde{x}_0
\end{cases}
\end{align*}
\]

(Negative Part Problem)
Splitting of the problem

- We use the same splitting from Jin and Zhou (2008)
- For any $c \in (\text{ess inf } \rho, \text{ess sup } \rho)$, $\tilde{x}_+ \geq \tilde{x}_0^+$, solve the following problems to get their value function $v_\pm(c, \tilde{x}_+)$

\[
\begin{align*}
\max & \quad V_+(\tilde{X}_+) \\
\text{s.t.} & \quad \tilde{X}_+ \geq 0 \\
& \quad \tilde{X} = 0 \text{ when } \rho > c \\
& \quad E[\tilde{X}+\rho] = \tilde{x}_+ \\
\text{(Positive Part Problem)}
\end{align*}
\]

\[
\begin{align*}
\min & \quad V_-(-\tilde{X}_-) \\
\text{s.t.} & \quad -\tilde{X}_- \in [0, L] \\
& \quad \tilde{X}_- = 0 \text{ when } \rho < c \\
& \quad E[-\tilde{X}_-\rho] = \tilde{x}_+ - \tilde{x}_0 \\
\text{(Negative Part Problem)}
\end{align*}
\]

- Then find the optimal splitting c^* and \tilde{x}_+^* by solving

\[
\text{Maximize }_{c \in (\text{ess inf } \rho, \text{ess sup } \rho), \tilde{x}_+ \geq \tilde{x}_0^+} v_+(c, \tilde{x}_+) - v_-(c, \tilde{x}_+).
\]
Recovery of optimal contingent claim

- If
 - c^*, \tilde{x}^*_+ is an optimal splitting
 - $\tilde{X}^*_+, \tilde{X}^*_-$ are optimal for the two subproblems respectively with parameters c^*, \tilde{x}^*_+,

then $X = \tilde{X}^*_+ 1_{\rho \leq c^*} - \tilde{X}^*_- 1_{\rho > c^*} + B$ is optimal
Recovery of optimal contingent claim

- If
 - c^*, \tilde{x}^+_\ast is an optimal splitting
 - $\tilde{X}^+_\ast, \tilde{X}^-_\ast$ are optimal for the two subproblems respectively with parameters c^*, \tilde{x}^+_\ast,

 then $X = \tilde{X}^+_\ast 1_{\rho \leq c^*} - \tilde{X}^-_\ast 1_{\rho > c^*} + B$ is optimal

- If any of them fails to exist, then there is no optimal contingent claim
Positive part problem solution

The positive part problem is the same as in Jin and Zhou (2008)
Positive part problem solution

- Denote $F_{\rho}(\cdot)$ as the CDF of ρ. Suppose it is continuous.

- Suppose (1) $\frac{F_{\rho}^{-1}(\cdot)}{T'_+(\cdot)}$ is \uparrow on $[0, 1]$; (2) $\lim \inf_{x \to +\infty} \frac{-x u'_+(x)}{u'_+(x)} > 0$; (3) $E[u_+((u'_+)^{-1}(\frac{\rho}{T'_+(F_{\rho}(\rho))})) T'_+(F_{\rho}(\rho))] < +\infty$.
Positive part problem solution

- Denote $F_{\rho}(\cdot)$ as the CDF of ρ. Suppose it is continuous.

- Suppose (1) $\frac{F_{\rho}^{-1}(\cdot)}{T'_+(\cdot)}$ is \uparrow on $[0, 1]$; (2) $\liminf_{x \to +\infty} \frac{-xu''_+(x)}{u'_+(x)} > 0$; (3) $E[u_+((u'_+)^{-1}(\frac{\rho}{T'_+(F_{\rho}(\rho))}))(T'_+(F_{\rho}(\rho)))] < +\infty$.

Theorem 1 For any $c \in (\text{essinf}\, \rho, \text{esssup}\, \rho]$ and $\tilde{x}_+ \geq \tilde{x}_0^+$, the optimal solution for the positive part problem is

$$\tilde{X}_+^* = (u'_+)^{-1}(\lambda \frac{\rho}{T'_+(F_{\rho}(\rho))})1_{\rho \leq c}.$$

The optimal value is

$$v_+(c, \tilde{x}_+) = E[u_+((u'_+)^{-1}(\lambda \frac{\rho}{T'_+(F_{\rho}(\rho))}))(T'_+(F_{\rho}(\rho))1_{\rho \leq c}),$$

where λ is the unique one making \tilde{X}_+^* feasible.
Consider the problem

$$\min_{Y \in [0,L]} E[Y \rho] = a \ V_-(Y)$$
Negative part problem

Consider the problem:

$$\min_{Y \in [0, L], E[Y \rho] = a} V_-(Y)$$

- Notice $V_-(Y)$ only depends on the distribution of Y.
Negative part problem

Consider the problem \[\min_{Y \in [0, L], E[Y \rho] = a} V_-(Y) \]

- Notice \(V_-(Y) \) only depends on the distribution of \(Y \)
- If \(Y \sim F \), then \(E[Y \rho] \leq E[F^{-1}(F_\rho(\rho))] \)
Negative part problem

Consider the problem

\[
\min_{Y \in [0, L], E[Y \rho] = a} V_-(Y)
\]

- Notice \(V_-(Y) \) only depends on the distribution of \(Y \).
- If \(Y \sim F \), then \(E[Y \rho] \leq E[F^{-1}(F_{\rho}(\rho))] \).
- \(Y^* \) must be \(Y^* = F^{-1}(F_{\rho}(\rho)) \) with some CDF \(F \).
Consider the problem

$$\min_{Y \in [0, L], E[Y \rho] = a} V_-(Y)$$

- Notice $V_-(Y)$ only depends on the distribution of Y
- If $Y \sim F$, then $E[Y \rho] \leq E[F^{-1}(F_\rho(\rho))]$
- Y^* must be $Y^* = F^{-1}(F_\rho(\rho))$ with some CDF F
- Denote $Z = F_\rho(\rho)$, $\Gamma = \{F^{-1}(\cdot) : F \text{ is a CDF}\}$ be the set of quantile functions. Then the problem is equivalent to

$$\min \bar{v}_2(g(\cdot)) := E[u_- (g(Z)) T'_-(1 - Z)]$$

s.t. \[\begin{cases} g(\cdot) \in \Gamma, \ g(\cdot) \in [0, L] \text{ on } [0, 1) \\ E[g(Z)F_\rho^{-1}(Z)] = a. \end{cases}\]
Optimal quantile function

- If $g^*(\cdot)$ is optimal quantile function, then $Y^* = g\left(1 - F_{\rho}(\rho)\right)$ is the optimal random variable.
Optimal quantile function

- If $g^*(\cdot)$ is optimal quantile function, then $Y^* = g(1 - F_\rho(\rho))$ is the optimal random variable.
- The constraint $g(\cdot) \leq L$ is due to the bounded loss.
Optimal quantile function

- If \(g^*(\cdot) \) is optimal quantile function, then \(Y^* = g(1 - F_\rho(\rho)) \) is the optimal random variable.

- The constraint \(g(\cdot) \leq L \) is due to the bounded loss
 - \(\bar{v}_2(g(\cdot)) \) is concave w.r.t. \(g(\cdot) \)
Optimal quantile function

- If $g^*(\cdot)$ is optimal quantile function, then $Y^* = g(1 - F_\rho(\rho))$ is the optimal random variable.

- The constraint $g(\cdot) \leq L$ is due to the bounded loss
 - $\bar{v}_2(g(\cdot))$ is concave w.r.t. $g(\cdot)$
 - g^* must be on the boundary of the feasible set
Optimal quantile function

- If $g^*(\cdot)$ is optimal quantile function, then $Y^* = g(1 - F_\rho(\rho))$ is the optimal random variable.

- The constraint $g(\cdot) \leq L$ is due to the bounded loss
 - $\tilde{v}_2(g(\cdot))$ is concave w.r.t. $g(\cdot)$
 - g^* must be on the boundary of the feasible set
 - Without L, Jin and Zhou (2008) shows that the boundary consists of $g^*(z; c) := q(c)\mathbf{1}_{z \geq c}$ with proper function $q(\cdot)$ and $c \in (0, 1]$
Optimal quantile function

- If \(g^*(\cdot) \) is optimal quantile function, then \(Y^* = g(1 - F\rho(\rho)) \) is the optimal random variable.
- The constraint \(g(\cdot) \leq L \) is due to the bounded loss
 - \(\bar{v}_2(g(\cdot)) \) is concave w.r.t. \(g(\cdot) \)
 - \(g^* \) must be on the boundary of the feasible set
 - Without \(L \), Jin and Zhou (2008) shows that the boundary consists of \(g^*(z; c) := q(c) \mathbf{1}_{z \geq c} \) with proper function \(q(\cdot) \) and \(c \in (0, 1] \)
- We need to find out the boundary with the bound \(L \)
Optimal quantile

Theorem 2 If there are optimal $g(\cdot)$, then one of them is in the form

$$g(x; c_1, c_2) = q(c_1, c_2; a) \mathbf{1}_{x \in [F_\rho(c_1), F_\rho(c_2))] + L \mathbf{1}_{x \geq F_\rho(c_2)},$$

where

$$q(c_1, c_2; a) = \frac{a - L E[\rho \mathbf{1}_{\rho \geq c_2}]}{E[\rho \mathbf{1}_{\rho \in [c_1, c_2)}]}.$$
Optimal quantile

Theorem 2 If there are optimal $g(\cdot)$, then one of them is in the form:

$$g(x; c_1, c_2) = q(c_1, c_2; a)1_{x \in [F_\rho(c_1), F_\rho(c_2))} + L1_{x \geq F_\rho(c_2)},$$

where

$$q(c_1, c_2; a) = \frac{a - LE[\rho 1_{\rho \geq c_2}]}{E[\rho 1_{\rho \in [c_1, c_2)}]}.$$

- Only need to solve the problem

$$\min \bar{v}_2(g(\cdot; c_1, c_2))$$

$$s.t. \quad \text{essinf} \rho \leq c_1 < c_2 \leq \text{esssup} \rho$$
Optimal negative part

Theorem 3 For any $c \in [\text{essinf}\rho, \text{esssup}\rho)$, $\tilde{x}_+ > \tilde{x}_0^+$, the optimal value of the negative part problem is

$$v_-(c, \tilde{x}_+) = \inf_{c \leq c_1 < c_2 \leq \text{esssup}\rho} v_3(c_1, c_2; c, \tilde{x}_+),$$

where

$$v_3(\cdots) = u_-(q(c_1, c_2, \tilde{x}_+ - \tilde{x}_0))(T_-(P(\rho \geq c_2)) - T_-(P(\rho \geq c_1)))$$

$$+ u_-(L)T_-(P(\rho \geq c_2)).$$
Theorem 3 For any \(c \in [\text{essinf}\, \rho, \text{esssup}\, \rho) \), \(\tilde{x}_+ > \tilde{x}_0^+ \), the optimal value of the negative part problem is

\[
v_-(c, \tilde{x}_+) = \inf_{c \leq c_1 < c_2 \leq \text{esssup}\, \rho) v_3(c_1, c_2; c, \tilde{x}_+),
\]

where

\[
v_3(\cdots) = u_-(q(c_1, c_2, \tilde{x}_+ - \tilde{x}_0))(T_-(P(\rho \geq c_2)) - T_-(P(\rho \geq c_1))) + u_-(L)T_-(P(\rho \geq c_2)).
\]

Furthermore, if \(v_-(c, x_+) \) is obtained at \((c_1^*, c_2^*)\), then

\[
\tilde{X}_-^* = q(c_1^*, c_2^*; \tilde{x}_+^* - \tilde{x}_0)1_{\rho \in [c_1^*, c_2^*)} + L1_{\rho \geq c_2^*}
\]

is an optimal solution for the negative part problem.
The optimal splitting c^*, \tilde{x}^*_+ can be determined by

$$\max \ v_+(c, \tilde{x}_+) - v_3(c, c_2; c, \tilde{x}_+)$$

$$s.t. \ \tilde{x}_+ \geq \tilde{x}_0, \essinf \rho \leq c < c_2 \leq \esssup \rho$$
Optimal terminal wealth

The optimal splitting \(c^*, \tilde{x}^* \) can be determined by

\[
\max \; v_+(c, \tilde{x}_+) - v_3(c, c_2; c, \tilde{x}_+) \\
\text{s.t.} \; \tilde{x}_+ \geq \tilde{x}_0, \; \text{essinf} \rho \leq c < c_2 \leq \text{esssup} \rho
\]

Theorem 4 Under the assumption made for positive part problem,

(i) If \((c^*, c_2^*, \tilde{x}_+^*)\) is an optimal splitting, then

\[
X^* = (u_+^*)^{-1}(\lambda \frac{\rho}{T'_+(F(\rho))})1_{\rho \leq c^*} - q(c^*, c_2^*; \tilde{x}_+^* - \tilde{x}_0)1_{\rho \in [c^*, c_2^*)} - L1_{\rho \geq c_2^*} + B
\]

is an optimal terminal wealth.
Optimal terminal wealth

The optimal splitting c^*, \tilde{x}_+^* can be determined by

$$\max v_+(c, \tilde{x}_+) - v_3(c, c_2; c, \tilde{x}_+)$$

$$s.t. \quad \tilde{x}_+ \geq \tilde{x}_0, \text{essinf} \rho \leq c < c_2 \leq \text{esssup} \rho$$

Theorem 4 Under the assumption made for positive part problem,

(i) If $(c^*, c_2^*, \tilde{x}_+^*)$ is an optimal splitting, then

$$X^* = (u'_+)^{-1}(\lambda \frac{\rho}{T'_+(F(\rho))})1_{\rho \leq c^*} - q(c^*, c_2^*; \tilde{x}_+^* - \tilde{x}_0)1_{\rho \in [c^*, c_2^*)} - L1_{\rho \geq c_2^*} + B$$

is an optimal terminal wealth.

(ii) If there is no optimal (c, c_2, \tilde{x}_+), then there is no optimal terminal wealth.
Example: power value function

- Generally, X^* is a three-piece function of ρ
Example: power value function

• Generally, X^* is a three-piece function of ρ

• Consider the example with $u_+(x) = x^\alpha$, $u_-(x) = kx^\alpha$ for some $k > 1$ and $\alpha \in (0, 1)$

 ◦ In this example, optimal solution always exists
Example: power value function

• Generally, X^* is a three-piece function of ρ

• Consider the example with $u_+(x) = x^\alpha$, $u_-(x) = k x^\alpha$ for some $k > 1$ and $\alpha \in (0, 1)$
 ○ In this example, optimal solution always exists

• Define $f_1 = 1 - F_\rho$, $f_2(x) = E[\rho 1_{\rho \geq x}]$, $f(x) = f_2(f_1^{-1}(x))$
Example: power value function

- Generally, X^* is a three-piece function of ρ

- Consider the example with $u_+(x) = x^\alpha$, $u_-(x) = kx^\alpha$ for some $k > 1$ and $\alpha \in (0, 1)$
 - In this example, optimal solution always exists

- Define $f_1 = 1 - F_\rho$, $f_2(x) = E[\rho 1_{\rho \geq x}]$, $f(x) = f_2(f_1^{-1}(x))$

Theorem 5 If $h(x) = T_-(f^{-1}(x)))$ is a convex function, then the optimal splitting (c^*, c_2^*, x_+^*) satisfies $c^* = c_2^*$. Hence the optimal contingent claim is

$$X^* = (u'_+)^{-1}(\lambda \frac{\rho}{T'_+(F(\rho))}) 1_{\rho \leq c_2^*} - L 1_{\rho \geq c_2^*} + B.$$
Example: power value function

• Consider the case $h(x) = x^\beta$ with $\beta > 0$

• If $\beta < 1$, Theorem 5 does not apply
Example: power value function

- Consider the case $h(x) = x^\beta$ with $\beta > 0$

- If $\beta < 1$, Theorem 5 does not apply

Theorem 6 Given $h(x) = x^\beta$ for some $\beta > 0$. Then

- If $\beta \geq \alpha$, then $c^*_2 = c^*$, and

 $$X^* = (u'_+)^{-1} \left(\lambda \frac{\rho}{T'_{(F(\rho))}} 1_{\rho \leq c^*_2} - L 1_{\rho \geq c^*_2} + B. \right)$$
Example: power value function

- Consider the case \(h(x) = x^\beta \) with \(\beta > 0 \)

- If \(\beta < 1 \), Theorem 5 does not apply

Theorem 6

Given \(h(x) = x^\beta \) for some \(\beta > 0 \). Then

- If \(\beta \geq \alpha \), then \(c_2^* = c^* \), and
 \[
 X^* = (u'_+)^{-1}(\lambda_{T_+}(F(\rho)))1_{\rho \leq c_2^*} - L1_{\rho \geq c_2^*} + B.
 \]

- If \(\beta < \alpha \), then \(c_2^* = +\infty \), and
 \[
 X^* = (u'_+)^{-1}(\lambda_{T_+}(F(\rho)))1_{\rho \leq c^*} - \frac{\tilde{x}_+ - \tilde{x}_0}{E\rho 1_{\rho \geq c^*}}1_{\rho \geq c^*} + B.
 \]
Example: power value function

- Consider the case \(h(x) = x^\beta \) with \(\beta > 0 \)
- If \(\beta < 1 \), Theorem 5 does not apply

Theorem 6 Given \(h(x) = x^\beta \) for some \(\beta > 0 \). Then

- If \(\beta \geq \alpha \), then \(c_2^* = c^* \), and
 \[X^* = (u'_+)^{-1}(\lambda\frac{\rho}{T'_+(F(\rho))})1_{\rho \leq c_2^*} - L1_{\rho \geq c_2^*} + B. \]
- If \(\beta < \alpha \), then \(c_2^* = +\infty \), and
 \[X^* = (u'_+)^{-1}(\lambda\frac{\rho}{T'_+(F(\rho))})1_{\rho \leq c^*} - \frac{\tilde{x}^*_+ - \tilde{x}_0}{E\rho1_{\rho \geq c^*}}1_{\rho \geq c^*} + B. \]

In any case, \(X^* \) is a two-piece function of \(\rho \).
Example: power value function

- Is the optimal solution always two-piece for power value function?
Example: power value function

- Is the optimal solution always two-piece for power value function?

- A three-piece example:

 - $L = 10$, $\tilde{x}_0 = -1$, $\beta = 0.85$, $\alpha = 0.88$, $k = 2.25$,

 $\rho \sim \text{Lognormal}(-0.045, 0.09)$

 - $h(x) = \begin{cases}
 0.5x & x \in [0, 0.05] \\
 20 \cdot 0.1^\beta (x - 0.05) + 0.025(0.1 - x) & x \in [0.05, 0.1] \\
 x^\beta & x \in [0.1, 1] \end{cases}$

- The optimal solution $\tilde{X}^* = X^* - B$ is as in the next figure
Example: power value function
Thank you very much!