Analysis of Fourier Transform Valuation Formulas and Applications

Ernst Eberlein

Freiburg Institute for Advanced Studies (FRIAS) and Center for Data Analysis and Modeling (FDM) University of Freiburg

(joint work with Kathrin Glau and Antonis Papapantoleon)

6th World Congress of the Bachelier Finance Society
Toronto June 22–26, 2010
Volatility surfaces of foreign exchange and interest rate options

- Volatilities vary in strike (smile)
- Volatilities vary in time to maturity (term structure)
- Volatility clustering
Fourier and Laplace based valuation formulas

Carr and Madan (1999)
Raible (2000)
Borovkov and Novikov (2002): exotic options
Lee (2004): discretization error in fast Fourier transform
Hubalek and Kallsen (2005): options on several assets
Biagini, Bregman, and Meyer-Brandis (2008): indices
Hurd and Zhou (2009): spread options
Eberlein and Kluge (2006): interest rate derivatives
Eberlein, Kluge, and Schönbucher (2006): credit default swaptions
Harmonic analysis (Parseval’s formula)
The model

Exponential semimartingale model

\[B_T = (\Omega, \mathcal{F}, \mathcal{F}, P) \] stochastic basis, where \(\mathcal{F} = \mathcal{F}_T \) and \(\mathcal{F} = (\mathcal{F}_t)_{0 \leq t \leq T} \).

Price process of a financial asset as exponential semimartingale

\[S_t = S_0 e^{H_t}, \quad 0 \leq t \leq T. \tag{1} \]

\(H = (H_t)_{0 \leq t \leq T} \) semimartingale with canonical representation

\[H = B + H^c + h(x) \ast (\mu^H - \nu) + (x - h(x)) \ast \mu^H. \tag{2} \]

For the processes \(B, C = \langle H^c \rangle \), and the measure \(\nu \) we use the notation

\[\mathbb{T}(H|P) = (B, C, \nu) \]

which is called the \textit{triplet of predictable characteristics} of \(H \).
Alternative model description

\[\mathcal{E}(X) = (\mathcal{E}(X)_t)_{0 \leq t \leq T} \quad \text{stochastic exponential} \]

\[S_t = \mathcal{E}(\tilde{H})_t, \quad 0 \leq t \leq T \]
\[dS_t = S_t d\tilde{H}_t \]

where

\[\tilde{H}_t = H_t + \frac{1}{2} \langle H^c \rangle_t + \int_0^t \int_{\mathbb{R}} (e^x - 1 - x) \mu(H)(ds, dx) \]

Note

\[\mathcal{E}(\tilde{H})_t = \exp \left(\tilde{H}_t - \frac{1}{2} \langle H^c \rangle_t \right) \prod_{0 < s \leq t} (1 + \Delta \tilde{H}_s) \exp(-\Delta \tilde{H}_s) \]

Asset price positive only if \(\Delta \tilde{H} > -1 \).
Martingale modeling

Let $\mathcal{M}_{\text{loc}}(P)$ be the class of local martingales.

Assumption (ES)

The process $1_{\{x>1\}} e^x \ast \nu$ has bounded variation.

Then

$$ S = S_0 e^H \in \mathcal{M}_{\text{loc}}(P) \iff B + \frac{C}{2} + (e^x - 1 - h(x)) \ast \nu = 0. \quad (3) $$

Throughout, we assume that P is an equivalent martingale measure for S.

By the *Fundamental Theorem of Asset Pricing*, the value of an option on S equals the *discounted expected payoff* under this martingale measure.

We assume zero interest rates.
Supremum and infimum processes

Let $X = (X_t)_{0 \leq t \leq T}$ be a stochastic process. Denote by

$$
\overline{X}_t = \sup_{0 \leq u \leq t} X_u \quad \text{and} \quad \underline{X}_t = \inf_{0 \leq u \leq t} X_u
$$

the supremum and infimum process of X respectively. Since the exponential function is monotone and increasing

$$
\overline{S}_T = \sup_{0 \leq t \leq T} S_t = \sup_{0 \leq t \leq T} \left(S_0 e^{H_t} \right) = S_0 e^{\sup_{0 \leq t \leq T} H_t} = S_0 e^{\overline{H}_T}. \quad (4)
$$

Similarly

$$
\underline{S}_T = S_0 e^{\underline{H}_T}. \quad (5)
$$
Valuation formulas – payoff functional

We want to price an option with payoff $\Phi(S_t, 0 \leq t \leq T)$, where Φ is a measurable, non-negative functional.

Separation of payoff function from the underlying process:

Example

Fixed strike lookback option

\[
(S_T - K)^+ = (S_0 e^{H_T} - K)^+ = (e^{H_T + \log S_0} - K)^+
\]

1. The *payoff function* is an arbitrary function $f: \mathbb{R} \to \mathbb{R}_+$; for example $f(x) = (e^x - K)^+$ or $f(x) = 1_{\{e^x > B\}}$, for $K, B \in \mathbb{R}_+$.

2. The *underlying process* denoted by X, can be the log-asset price process or the supremum/infimum or an average of the log-asset price process (e.g. $X = H$ or $X = \overline{H}$).
Valuation formulas

Consider the option price as a function of S_0 or better of $s = -\log S_0$

X driving process ($X = H, \bar{H}, \underline{H}$, etc.)

$\Rightarrow \Phi(S_0 e^{H_t}, 0 \leq t \leq T) = f(X_T - s)$

Time-0 price of the option (assuming $r \equiv 0$)

$\nabla_f(X; s) = E[\Phi(S_t, 0 \leq t \leq T)] = E[f(X_T - s)]$

Valuation formulas based on Fourier and Laplace transforms

Carr and Madan (1999) plain vanilla options

Raible (2000) general payoffs, Lebesgue densities

In these approaches: Some sort of continuity assumption (payoff or random variable)
Valuation formulas – assumptions

\(M_{X_T} \) moment generating function of \(X_T \)
\[g(x) = e^{-Rx}f(x) \] (for some \(R \in \mathbb{R} \)) dampered payoff function
\(L_{bc}^1(\mathbb{R}) \) bounded, continuous functions in \(L^1(\mathbb{R}) \)

Assumptions

(C1) \(g \in L_{bc}^1(\mathbb{R}) \)
(C2) \(M_{X_T}(R) \) exists
(C3) \(\hat{g} \in L^1(\mathbb{R}) \)
Valuation formulas

Theorem

Assume that (C1)–(C3) are in force. Then, the price $V_f(X; s)$ of an option on $S = (S_t)_{0 \leq t \leq T}$ with payoff $f(X_T)$ is given by

$$V_f(X; s) = e^{-Rs} \frac{2\pi}{2\pi} \int_{\mathbb{R}} e^{ius} \varphi_{X_T}(-u - iR) \hat{f}(u + iR) du,$$

(6)

where φ_{X_T} denotes the extended characteristic function of X_T and \hat{f} denotes the Fourier transform of f.
Discussion of assumptions

Alternative choice: \((C1')\) \(g \in L^1(\mathbb{R})\)

\((C3')\) \(e^{R \cdot P_T} \in L^1(\mathbb{R})\)

\((C3')\) \(\Rightarrow e^{R \cdot P_T}\) has a cont. bounded Lebesgue density

Recall: \((C3)\) \(\hat{g} \in L^1(\mathbb{R})\)

Sobolov space

\[H^1(\mathbb{R}) = \{ g \in L^2(\mathbb{R}) \mid \partial g \text{ exists and } \partial g \in L^2(\mathbb{R}) \} \]

Lemma

\(g \in H^1(\mathbb{R}) \Rightarrow \hat{g} \in L^1(\mathbb{R})\)

Similar for the Sobolev–Slobodeckij space \(H^S(\mathbb{R}) \ (s > \frac{1}{2})\)
Examples of payoff functions

Example (Call and put option)

Call payoff \(f(x) = (e^x - K)^+ \), \(K \in \mathbb{R}_+ \),

\[
\hat{f}(u + iR) = \frac{K^{1+iu-R}}{(iu - R)(1 + iu - R)}, \quad R \in I_1 = (1, \infty). \tag{7}
\]

Similarly, if \(f(x) = (K - e^x)^+ \), \(K \in \mathbb{R}_+ \),

\[
\hat{f}(u + iR) = \frac{K^{1+iu-R}}{(iu - R)(1 + iu - R)}, \quad R \in I_1 = (-\infty, 0). \tag{8}
\]
Example (Digital option)

Call payoff \(\mathbb{1}_{\{e^x > B\}}, B \in \mathbb{R}_+ \).

\[
\hat{f}(u + iR) = -B^{iu-R} \frac{1}{iu-R}, \quad R \in I_1 = (0, \infty).
\] (9)

Similarly, for the payoff \(f(x) = \mathbb{1}_{\{e^x < B\}}, B \in \mathbb{R}_+ \),

\[
\hat{f}(u + iR) = B^{iu-R} \frac{1}{iu-R}, \quad R \in I_1 = (-\infty, 0).
\] (10)

Example (Double digital option)

The payoff of a double digital option is \(\mathbb{1}_{\{B < e^x < \bar{B}\}}, B, \bar{B} \in \mathbb{R}_+ \).

\[
\hat{f}(u + iR) = \frac{1}{iu-R} \left(\bar{B}^{iu-R} - B^{iu-R} \right), \quad R \in I_1 = \mathbb{R} \setminus \{0\}.
\] (11)
Example (Asset-or-nothing digital)

Payoff \(f(x) = e^x \mathbb{1}_{\{e^x > B\}} \)

\[\hat{f}(u + iR) = -\frac{B^{1+iu-R}}{1 + iu - R}, \quad R \in I_1 = (1, \infty) \]

Similarly \(f(x) = e^x \mathbb{1}_{\{e^x < B\}} \)

\[\hat{f}(u + iR) = \frac{B^{1+iu-R}}{1 + iu - R}, \quad R \in I_1 = (-\infty, 1) \]

Example (Self-quanto option)

Call payoff \(f(x) = e^x (e^x - K)^+ \)

\[\hat{f}(u + iR) = \frac{K^{2+iu-R}}{(1 + iu - R)(2 + iu - R)}, \quad R \in I_1 = (2, \infty) \]
Non-path-dependent options

European option on an asset with price process \(S_t = e^{H_t} \)

Examples: call, put, digitals, asset-or-nothing, double digitals, self-quanto options

\[X_T \equiv H_T, \quad \text{i.e. we need } \varphi_{H_T} \]

\[
\varphi_{H_1}(u) = e^{iu\mu} \left(\frac{\alpha^2 - \beta^2}{\alpha^2 - (\beta + iu)^2} \right)^{\lambda/2} \frac{K_{\lambda}(\delta \sqrt{\alpha^2 - (\beta + iu)^2})}{K_{\lambda}(\delta \sqrt{\alpha^2 - \beta^2})}
\]

\[l_2 = (-\alpha - \beta, \alpha - \beta) \]

\[\varphi_{H_T}(u) = (\varphi_{H_1}(u))^T \]

similar: NIG, CGMY, Meixner
Non-path-dependent options II

Stochastic volatility Lévy models: Carr, Geman, Madan, Yor (2003)
Eberlein, Kallsen, Kristen (2003)

Stochastic clock \[Y_t = \int_0^t y_s ds \quad (y_s > 0) \]
e.g. CIR process

\[dy_t = K(\eta - y_t)dt + \lambda y_t^{1/2} dW_t \]

Define for a pure jump Lévy process \(X = (X_t)_{t \geq 0} \)

\[H_t = X_{Y_t} \quad (0 \leq t \leq T) \]

Then

\[\varphi_{H_t}(u) = \frac{\varphi_{Y_t}(-i\varphi_{X_t}(u))}{(\varphi_{Y_t}(-iu \varphi_{X_t}(-i)))^{iu}} \]
Classification of option types

<table>
<thead>
<tr>
<th>Lévy model</th>
<th>(S_t = S_0 e^{H_t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>payoff</td>
<td>payoff function</td>
</tr>
<tr>
<td>((S_T - K)^+)</td>
<td>(f(x) = (e^x - K)^+)</td>
</tr>
<tr>
<td>call</td>
<td></td>
</tr>
<tr>
<td>1{(S_T > B}}</td>
<td>(f(x) = 1{e^x > B})</td>
</tr>
<tr>
<td>digital</td>
<td></td>
</tr>
<tr>
<td>((\overline{S}_T - K)^+)</td>
<td>(f(x) = (e^x - K)^+)</td>
</tr>
<tr>
<td>lookback</td>
<td></td>
</tr>
<tr>
<td>1{(\overline{S}_T > B}}</td>
<td>(f(x) = 1{e^x > B})</td>
</tr>
<tr>
<td>digital barrier = one touch</td>
<td></td>
</tr>
</tbody>
</table>
Valuation formula for the last case

Payoff function f maybe discontinuous

P_{X_T} does not necessarily possess a Lebesgue density

Assumption

(D1) $g \in L^1(\mathbb{R})$

(D2) $M_{X_T}(R)$ exists

Theorem

Assume (D1)–(D2) then

$$V_f(X; s) = \lim_{A \to \infty} \frac{e^{-Rs}}{2\pi} \int_{-A}^{A} e^{-ius} \varphi_{X_T}(u - iR) \hat{f}(iR - u) \, du$$

if $V_f(X; \cdot)$ is of bounded variation in a neighborhood of s and $V_f(X; \cdot)$ is continuous at s.
Options on multiple assets

Basket options

Options on the minimum: \((S_T^1 \wedge \cdots \wedge S_T^d - K)^+\)

Multiple functionals of one asset

Barrier options: \((S_T - K)^+ \mathbb{1}_{\{S_T > B\}}\)

Slide-in or corridor options: \((S_T - K)^+ \sum_{i=1}^{N} \mathbb{1}_{\{L < S_{T_i} < H\}}\)

Modelling:
\[
S_t^i = S_0^i \exp(H_t^i) \quad (1 \leq i \leq d)
\]
\[
X_T = \Psi(H_t \mid 0 \leq t \leq T)
\]
\[
f : \mathbb{R}^d \rightarrow \mathbb{R}_+
\]
\[
g(x) = e^{-\langle R, x \rangle} f(x) \quad (x \in \mathbb{R}^d)
\]

Assumptions:

(A1) \(g \in L^1(\mathbb{R}^d)\)

(A2) \(M_{X_T}(R)\) exists

(A3) \(\hat{\varrho} \in L^1(\mathbb{R}^d)\) where \(\varrho(dx) = e^{\langle R, x \rangle} P_X(dx)\)
Theorem

If the asset price processes are modeled as exponential semimartingale processes such that $S_i \in \mathcal{M}_{1\text{oc}}(P)$ (1 ≤ i ≤ d) and conditions (A1)–(A3) are in force, then

$$V_f(X; s) = \frac{e^{-\langle R, s \rangle}}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\langle u, s \rangle} \mathcal{M}_{X_T}(R + iu) f(iR - u) du$$

Remark

When the payoff function is discontinuous and the driving process does not possess a Lebesgue density $\rightarrow L^2$-limit result
Sensitivities – Greeks

\[V_f(X; S_0) = \frac{1}{2\pi} \int_{\mathbb{R}} S_0^{R-\text{i}u} M_{X_T}(R - \text{i}u) \hat{f}(u + \text{i}R) du \]

Delta of an option

\[\Delta_f(X; S_0) = \frac{\partial V(X; S_0)}{\partial S_0} = \frac{1}{2\pi} \int_{\mathbb{R}} S_0^{R-1-\text{i}u} M_{X_T}(R - \text{i}u) \frac{\hat{f}(u + \text{i}R)}{(R - \text{i}u)^{-1}} du \]

Gamma of an option

\[\Gamma_f(X; S_0) = \frac{\partial^2 V_f(X; S_0)}{\partial^2 S_0} = \frac{1}{2\pi} \int_{\mathbb{R}} S_0^{R-2-\text{i}u} M_{X_T}(R - \text{i}u) \frac{\hat{f}(u + \text{i}R) (R - 1 - \text{i}u)^{-1} (R - \text{i}u)^{-1}}{du} \]
Numerical examples

Option prices in the 2d Black-Scholes model with negative correlation.

Option prices in the 2d stochastic volatility model.

Option prices in the 2d GH model with positive (left) and negative (right) correlation.
Lévy processes

Let $L = (L_t)_{0 \leq t \leq T}$ be a Lévy process with triplet of local characteristics (b, c, λ), i.e. $B_t(\omega) = bt$, $C_t(\omega) = ct$, $\nu(\omega; dt, dx) = dt\lambda(dx)$, λ Lévy measure.

Assumption (EM)

There exists a constant $M > 1$ such that

$$\int_{\{|x|>1\}} e^{ux} \lambda(dx) < \infty, \quad \forall u \in [-M, M].$$

Using (EM) and Theorems 25.3 and 25.17 in Sato (1999), we get that

$$E[e^{uL_t}] < \infty, \quad E[e^{u\bar{L}_t}] < \infty \quad \text{and} \quad E[e^{uL_t}] < \infty$$

for all $u \in [-M, M]$.
On the characteristic function of the supremum I

Proposition

Let $L = (L_t)_{0 \leq t \leq T}$ be a Lévy process that satisfies assumption (EM). Then, the characteristic function $\varphi_{\tilde{L}_t}$ of \tilde{L}_t has an analytic extension to the half plane $\{z \in \mathbb{C} : -M < \Im z < \infty\}$ and can be represented as a Fourier integral in the complex domain

$$\varphi_{\tilde{L}_t}(z) = E[e^{iz\tilde{L}_t}] = \int_{\mathbb{R}} e^{izx} P_{\tilde{L}_t}(dx).$$
Fluctuation theory for Lévy processes

Theorem
(Extension of Wiener–Hopf to the complex plane)

Let \(L \) be a Lévy process. The Laplace transform of \(\bar{L} \) at an independent and exponentially distributed time \(\theta, \theta \sim \text{Exp}(q) \), can be identified from the Wiener–Hopf factorization of \(L \) via

\[
E[e^{-\beta \bar{L}\theta}] = \int_0^\infty qE[e^{-\beta \bar{L}t}]e^{-qt} \, dt = \frac{\kappa(q, 0)}{\kappa(q, \beta)}
\]

for \(q > \alpha^*(M) \) and \(\beta \in \{ \beta \in \mathbb{C} | \Re(\beta) > -M \} \) where \(\kappa(q, \beta), \) is given by

\[
\kappa(q, \beta) = k \exp \left(\int_0^\infty \int_0^\infty (e^{-t} - e^{-qt-\beta x}) \frac{1}{t} P_L(dx) \, dt \right).
\]
On the characteristic function of the supremum II

Theorem

Let $L = (L_t)_{0 \leq t \leq T}$ be a Lévy process satisfying assumption (EM). The Laplace transform of L_t at a fixed time t, $t \in [0, T]$, is given by

$$E[e^{-\beta L_t}] = \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} \frac{e^{t(Y+iv)}}{Y + iv} \frac{\kappa(Y + iv, 0)}{\kappa(Y + iv, \beta)} dv,$$

for $Y > \alpha^*(M)$ and $\beta \in \mathbb{C}$ with $\Re \beta \in (-M, \infty)$.

Remark

Note that $\beta = -iz$ provides the characteristic function.
Application to lookback options

Fixed strike lookback call: $(\bar{S}_T - K)^+$ (analogous for lookback put).

Combining the results, we get

$$C_T(\bar{S}; K) = \frac{1}{2\pi} \int_{\mathbb{R}} S_0^{R-iu} \varphi^{-}_{LT}(-u - iR) \frac{K^{1+iu-R}}{(iu - R)(1 + iu - R)} du \quad (16)$$

where

$$\varphi^{-}_{LT}(-u - iR) = \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} e^{T(Y + iv)} \frac{\kappa(Y + iv, 0)}{\kappa(Y + iv, iu - R)} dv \quad (17)$$

for $R \in (1, M)$ and $Y > \alpha^*(M)$.

- The floating strike lookback option, $(\bar{S}_T - S_T)^+$, is treated by a duality formula (Eb., Papapantoleon (2005)).
One-touch options

One-touch call option: \(1_{\{S_T > B\}} \).

Driving Lévy process \(L \) is assumed to have infinite variation or has infinite activity and is regular upwards. \(L \) satisfies assumption (EM), then

\[
\begin{align*}
\text{DC}_T(S; B) &= \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} S_0^{R+iu} \varphi_L(u - iR) \frac{B^{-R-iu}}{R + iu} \, du \\
&= P(L_T > \log(B/S_0)) \\
&\quad \text{for } R \in (0, M).
\end{align*}
\]
Equity default swap (EDS)

- Fixed premium exchanged for payment at “default”
- default: drop of stock price by 30% or 50% of $S_0 \to$ first passage time
- fixed leg pays premium K at times T_1, \ldots, T_N, if $T_i \leq \tau_B$
- if $\tau_B \leq T$: protection payment C, paid at time τ_B
- premium of the EDS chosen such that initial value equals 0; hence

$$K = \frac{CE \left[e^{-r\tau_B} \mathbb{1}_{\{\tau_B \leq T\}} \right]}{\sum_{i=1}^N E \left[e^{-rT_i} \mathbb{1}_{\{\tau_B > T_i\}} \right]}.$$

(19)

- Calculations similar to touch options, since $\mathbb{1}_{\{\tau_B \leq T\}} = \mathbb{1}_{\{S_T \leq B\}}$.

The model
Valuation
Payoff functions and processes
Valuation continued
Exotic options
Interest rate derivatives
References
Basic interest rates

\[B(t, T) : \text{ price at time } t \in [0, T] \text{ of a default-free zero coupon bond with maturity } T \in [0, T^*] \quad (B(T, T) = 1) \]

\[f(t, T) : \text{ instantaneous forward rate} \]

\[B(t, T) = \exp \left(- \int_t^T f(t, u) \, du \right) \]

\[L(t, T) : \text{ default-free forward Libor rate for the interval } T \text{ to } T + \delta \text{ as of time } t \leq T \quad (\delta\text{-forward Libor rate}) \]

\[L(t, T) := \frac{1}{\delta} \left(\frac{B(t, T)}{B(t, T + \delta)} - 1 \right) \]

\[F_B(t, T, U) : \text{ forward price process for the two maturities } T < U \]

\[F_B(t, T, U) := \frac{B(t, T)}{B(t, U)} \]

\[1 + \delta L(t, T) = \frac{B(t, T)}{B(t, T + \delta)} = F_B(t, T, T + \delta) \]
Dynamics of the forward rates

(Eb–Raible (1999), Eb–Özkan (2003),

\[df(t, T) = \alpha(t, T) \, dt - \sigma(t, T) \, dL_t \quad (0 \leq t \leq T \leq T^*) \]

\(\alpha(t, T) \) and \(\sigma(t, T) \) satisfy measurability and boundedness conditions
and \(\alpha(s, T) = \sigma(s, T) = 0 \) for \(s > T \)

Define \(A(s, T) = \int_{s \wedge T}^{T} \alpha(s, u) \, du \) and \(\Sigma(s, T) = \int_{s \wedge T}^{T} \sigma(s, u) \, du \)

Assume \(0 \leq \Sigma^i(s, T) \leq M \quad (1 \leq i \leq d) \)

For most purposes we can consider deterministic \(\alpha \) and \(\sigma \)
Implications

Savings account and default-free zero coupon bond prices are given by

\[B_t = \frac{1}{B(0, t)} \exp \left(\int_0^t A(s, T) \, ds - \int_0^t \Sigma(s, t) \, dL_s \right) \quad \text{and} \]

\[B(t, T) = B(0, T)B_t \exp \left(-\int_0^t A(s, T) \, ds + \int_0^t \Sigma(s, T) \, dL_s \right). \]

If we choose \(A(s, T) = \theta_s(\Sigma(s, T)) \), then bond prices, discounted by the savings account, are martingales.

In case \(d = 1 \), the martingale measure is unique (see Eberlein, Jacod, and Raible (2004)).
Key tool

$L = (L^1, \ldots, L^d)$ \quad \text{\textit{d}-dimensional time-inhomogeneous \text{Lévy process}}

\[E[\exp(i\langle u, L_t \rangle)] = \exp \int_0^t \theta_s(iu) \, ds \quad \text{where} \]

\[\theta_s(z) = \langle z, b_s \rangle + \frac{1}{2} \langle z, c_s z \rangle + \int_{\mathbb{R}^d} \left(e^{\langle z, x \rangle} - 1 - \langle z, x \rangle \right) F_s(dx) \]

in case L is a (time-homogeneous) \text{Lévy process}, $\theta_s = \theta$ is the cumulant (log-moment generating function) of L_1.

\begin{table}[h]
\begin{tabular}{|l|}
\hline
\textbf{Proposition} & Eberlein, Raible (1999) \\
\hline
\textbf{Suppose $f : \mathbb{R}_+ \to \mathbb{C}^d$ is a continuous function such that $|R(f^i(x))| \leq M$ for all $i \in \{1, \ldots, d\}$ and $x \in \mathbb{R}_+$, then} & \\
\hline
$E \left[\exp \left(\int_0^t f(s) \, dL_s \right) \right] = \exp \left(\int_0^t \theta_s(f(s)) \, ds \right)$ & \\
\hline
\end{tabular}
\end{table}

Take $f(s) = \sum(s, T)$ for some $T \in [0, T^*]$.

© Eberlein, Uni Freiburg, 33
Pricing of European options

\[B(t, T) = B(0, T) \exp \left[\int_0^t (r(s) + \theta_s(\Sigma(s, T))) \, ds + \int_0^t \Sigma(s, T) \, dL_s \right] \]

where \(r(t) = f(t, t) \) short rate

\[V(0, t, T, w) \text{ time-0-price of a European option with maturity } t \text{ and payoff } w(B(t, T), K) \]

\[V(0, t, T, w) = \mathbb{E}_{\mathbb{P}^*} \left[B_t^{-1} w(B(t, T), K) \right] \]

Volatility structures

\[\Sigma(t, T) = \frac{\hat{\sigma}}{a} (1 - \exp(-a(T - t))) \quad (\text{Vasiček}) \]

\[\Sigma(t, T) = \tilde{\sigma}(T - t) \quad (\text{Ho–Lee}) \]

Fast algorithms for Caps, Floors, Swaptions, Digitals, Range options
Pricing formula for caps
(Eberlein, Kluge (2006))

\[w(B(t, T), K) = (B(t, T) - K)^+ \]

Call with strike \(K \) and maturity \(t \) on a bond that matures at \(T \)

\[C(0, t, T, K) = \mathbb{E}_{\mathbb{P}^*} [B_t^{-1}(B(t, T) - K)^+] \]
\[= B(0, t)\mathbb{E}_{\mathbb{P}_t} [(B(t, T) - K)^+] \]

Assume \(X = \int_0^t (\Sigma(s, T) - \Sigma(s, t))dL_s \) has a Lebesgue density, then

\[C(0, t, T, K) = \frac{1}{2\pi} KB(0, t) \exp(R\xi) \]
\[\times \int_{-\infty}^{\infty} e^{iu\xi}(R + iu)^{-1}(R + 1 + iu)^{-1} M_t^X(-R - iu)du \]

where \(\xi \) is a constant and \(R < -1 \).

Analogous for the corresponding put and for swaptions.
References

References (cont.)

