Overprized options on variance swaps in local vol models

Mathias Beiglböck, joint with Peter Friz and Stephan Sturm

Universität Wien

June 2010
Outline

1 Setting:
 - Stochastic Volatility
 - Local Volatility - Gyöngy - Dupire
Outline

1 Setting:
 - Stochastic Volatility
 - Local Volatility - Gyöngy - Dupire

2 Nice Conjecture
Outline

1. Setting:
 - Stochastic Volatility
 - Local Volatility - Gyöngy - Dupire

2. Nice Conjecture

3. Counterexample
Setting

Assumptions:

1. $r = 0$.
2. fixed Martingale measure \mathbb{P}.
3. time horizon: $[0, T]$.

\[dS_t(\omega) = S_t(\omega) \sigma(t, S_t(\omega)) dB_t(\omega), \quad \sigma = \sigma(t, \cdot) \text{ progressively measurable.}\]

\[d\tilde{S}_t(\omega) = \tilde{S}_t(\omega) \tilde{\sigma}(t, \tilde{S}_t(\omega)) dB_t(\omega), \quad \tilde{\sigma} = \sigma(t, s) \text{ is deterministic.}\]
Assumptions:

1. \(r = 0 \).
2. fixed Martingale measure \(\mathbb{P} \).
3. time horizon: \([0, T]\).

stochastic vol model:

\[
dS_t(\omega) = S_t(\omega)\sigma(t, \omega)dB_t(\omega), \sigma = \sigma(t, \omega)
\]

\(\sigma(t, \omega) \) progressively measurable.
Setting

Assumptions:

1. \(r = 0. \)
2. fixed Martingale measure \(\mathbb{P}. \)
3. time horizon: \([0, T]\).

stochastic vol model:

\[
dS_t(\omega) = S_t(\omega)\sigma(t, \omega)dB_t(\omega), \sigma = \sigma(t, \omega)
\]

\(\sigma(t, \omega) \) progressively measurable.

local vol:

\[
d\tilde{S}_t(\omega) = \tilde{S}_t(\omega)\tilde{\sigma}(t, \tilde{S}_t(\omega))dB_t(\omega)
\]

\(\sigma = \sigma(t, s) \) is deterministic.
Theorem (Gyöngy, ’86)

Assume S satisfies $dS_t(\omega) = S_t(\omega)\sigma(t, \omega)dB_t(\omega), \sigma = \sigma(t, \omega)$.

There exists a deterministic $\tilde{\sigma} = \tilde{\sigma}(t, s)$ so that \tilde{S}, given by $d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t)dB_t$, satisfies law (S_t) = law (\tilde{S}_t) for all $t \in [0, T]$.

For the explicit representation: $\tilde{\sigma}^2(t, s) = E[\sigma^2(t, \omega) | S_t = s]$.

The price of European call $C = C(t, K)$ depends solely on law (S_t) and (\tilde{S}_t) generates the same call prices $C = C(t, K)$.

M. Beiglböck (Universität Wien)
Theorem (Gyöngy, ’86)

Assume S satisfies $dS_t(\omega) = S_t(\omega)\sigma(t, \omega)dB_t(\omega)$, $\sigma = \sigma(t, \omega)$. There exists a deterministic $\tilde{\sigma} = \tilde{\sigma}(t, s)$ so that \tilde{S}, given by

$$d\tilde{S}_t = \tilde{S}_t\tilde{\sigma}(t, \tilde{S}_t) dB_t$$

satisfies $\text{law}(S_t) = \text{law}(\tilde{S}_t)$ for all $t \in [0, T]$.
Theorem (Gyöngy, ’86)

Assume S satisfies $dS_t(\omega) = S_t(\omega)\sigma(t, \omega)dB_t(\omega)$, $\sigma = \sigma(t, \omega)$. There exists a deterministic $\tilde{\sigma} = \tilde{\sigma}(t, s)$ so that \tilde{S}, given by

$$d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t$$

satisfies $\text{law}(S_t) = \text{law}(\tilde{S}_t)$ for all $t \in [0, T]$.

explicit representation: $\tilde{\sigma}^2(t, s) = \mathbb{E}[\sigma^2(t, \omega)|S_t = s]$.
Theorem (Gyöngy, '86)

Assume S satisfies $dS_t(\omega) = S_t(\omega)\sigma(t,\omega)dB_t(\omega), \sigma = \sigma(t,\omega)$. There exists a deterministic $\tilde{\sigma} = \tilde{\sigma}(t,s)$ so that \tilde{S}, given by

$$d\tilde{S}_t = \tilde{S}_t\tilde{\sigma}(t,\tilde{S}_t) dB_t$$

satisfies $\text{law}(S_t) = \text{law}(\tilde{S}_t)$ for all $t \in [0, T]$.

Explicit representation: $\tilde{\sigma}^2(t,s) = \mathbb{E}[\sigma^2(t,\omega)|S_t = s]$.

Price of European call $C = C(t,K)$ depends solely on $\text{law}(S_t)$. $\implies (S_t)$ and (\tilde{S}_t) generate the same call prices $C = C(t,K)$.
Dupire’s formula:

Assume that for $s > 0$, $t \in [0, T]$ call prices $C(t, K)$ are known. Define

$$\tilde{\sigma}^2(t, s) = 2 \frac{\partial_t C(t, s)}{s^2 \partial_{KK} C(t, s)}.$$

Then \tilde{S}, $d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t$ reproduces $C(t, K)$.
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options? we, today: realized variance and options thereon

\[V = \int_0^T \sigma^2(t) dt \]

resp. \[\tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) dt \]

Important observation:
\[E[\tilde{V}] = E[V]. \]

I.e. the variance swap has the same price in stochastic / local vol model:
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

\[V = \int_0^T \sigma^2(t) \, dt \quad \text{resp.} \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt \]
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

\[
V = \int_0^T \sigma^2(t) \, dt \quad \text{resp.} \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt
\]

Important observation: \(\mathbb{E}[\tilde{V}] = \mathbb{E}[V]\).
I.e. the variance swap has the same price in stoch. / loc. vol model:
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

\[
V = \int_0^T \sigma^2(t) \, dt \quad \text{resp.} \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt
\]

Important observation: \(\mathbb{E}[\tilde{V}] = \mathbb{E}[V]\).

I.e. the variance swap has the same price in stoch. / loc. vol model:
Tempting: Given call prices from the market \((dS = \sigma S \, dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

We, today: realized variance and options thereon

\[
V = \int_0^T \sigma^2(t) \, dt \quad \text{resp.} \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt
\]

Important observation: \(\mathbb{E}[\tilde{V}] = \mathbb{E}[V]\).
I.e. the variance swap has the same price in stoch. / loc. vol model:

\[
\mathbb{E}[\tilde{V}] = \mathbb{E} \int_0^T \mathbb{E}[\sigma^2(t, S_t = s) | s = \tilde{S}_t] \, dt
\]
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

\[
V = \int_0^T \sigma^2(t) \, dt \quad \text{resp.} \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt
\]

Important observation: \(\mathbb{E}[\tilde{V}] = \mathbb{E}[V]\).

i.e. the variance swap has the same price in stoch. / loc. vol model:

\[
\mathbb{E}[\tilde{V}] = \int_0^T \mathbb{E} \left[\mathbb{E} \left[\sigma^2(t, S_t = s) \mid s = \tilde{S}_t \right] \right] \, dt
\]
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

\[
V = \int_0^T \sigma^2(t) \, dt \quad \text{resp.} \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt
\]

Important observation: \(\mathbb{E}[\tilde{V}] = \mathbb{E}[V]\).
I.e. the variance swap has the same price in stoch. / loc. vol model:

\[
\mathbb{E}[\tilde{V}] = \int_0^T \mathbb{E}\left[\mathbb{E}\left[\sigma^2(t, S_t = s) \mid s = \tilde{S}_t\right]\right] \, dt
\]

\[
= \int_0^T \mathbb{E}\left[\mathbb{E}\left[\sigma^2(t, S_t = s) \mid s = S_t\right]\right] \, dt
\]
Tempting: Given call prices from the market \((dS = \sigma S dB)\), set up the local vol model, use it to price more complicated options.

Question: useful information for the price of exotic options?

we, today: realized variance and options thereon

\[
V = \int_0^T \sigma^2(t) \, dt \quad \text{resp.} \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt
\]

Important observation: \(E[\tilde{V}] = E[V]\).

I.e. the variance swap has the same price in stoch. / loc. vol model:

\[
E[\tilde{V}] = \int_0^T E \left[E \left[\sigma^2(t, S_t = s) | s = \tilde{S}_t \right] \right] dt
\]

\[
= \int_0^T E \left[E \left[\sigma^2(t, S_t = s) | s = S_t \right] \right] dt = \int_0^T E[\sigma^2(t)] \, dt = E[V].
\]
by known prices of European options.

Returning to the lower bound, it has been conjectured\footnote{M. Beiglböck (Universität Wien) Overprized options in local vol models June 2010 7 / 15} that the minimum possible value of an option on variance is the one generated from a local volatility model fitted to the volatility surface. Clearly options on variance have value even in a local volatility model because realized variance depends on the realized path of the stock price from inception to expiration. Given that local variance is a risk-neutral conditional expectation of instantaneous variance, it seems obvious that any other model would generate extra fluctuations of the local volatility surface relative to its initial state.

However, their model-independent upper and lower bounds is now
Recall: \[V = \int_0^T \sigma^2(t) \, dt \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt \]

Conjecture: \[\mathbb{E}[(V - K)^+] \geq \mathbb{E}[(\tilde{V} - K)^+] \quad \text{for all } K > 0. \]
Recall: \(V = \int_0^T \sigma^2(t) \, dt \quad \tilde{V} = \int_0^T \tilde{\sigma}^2(t, \tilde{S}(t)) \, dt \)

Conjecture: \(\mathbb{E}[(V - K)^+] \geq \mathbb{E}[(\tilde{V} - K)^+] \) for all \(K > 0 \).
Excursion: convex – order

\(\mu, \tilde{\mu} \) prob. measures on \(\mathbb{R} \),
\(\int_{-\infty}^{\infty} x \, d\mu(x) = \int_{-\infty}^{\infty} x \, d\tilde{\mu}(x) \).
Excursion: convex – order

$\mu, \tilde{\mu}$ prob. measures on \mathbb{R}, $\int_{-\infty}^{\infty} x \, d\mu(x) = \int_{-\infty}^{\infty} x \, d\tilde{\mu}(x)$.

$\mu \preceq_c \tilde{\mu}$: \iff

$\int \varphi(x) \, d\mu(x) \geq \int \varphi(x) \, d\tilde{\mu}(x)$ for every convex $\varphi : \mathbb{R} \to \mathbb{R}$.
Excursion: convex – order

\(\mu, \tilde{\mu} \) prob. measures on \(\mathbb{R} \), \(\int_{-\infty}^{\infty} x \, d\mu(x) = \int_{-\infty}^{\infty} x \, d\tilde{\mu}(x) \).

\[\mu \succcurlyeq_c \tilde{\mu} : \iff \int \varphi(x) \, d\mu(x) \geq \int \varphi(x) \, d\tilde{\mu}(x) \quad \text{for every convex } \varphi : \mathbb{R} \to \mathbb{R} \]

Tfae:
Excursion: convex – order

\(\mu, \tilde{\mu} \) prob. measures on \(\mathbb{R} \), \(\int_{-\infty}^{\infty} x \, d\mu(x) = \int_{-\infty}^{\infty} x \, d\tilde{\mu}(x) \).

\[\mu \succcurlyeq_c \tilde{\mu} \quad : \iff \quad \int \varphi(x) \, d\mu(x) \geq \int \varphi(x) \, d\tilde{\mu}(x) \quad \text{for every convex } \varphi: \mathbb{R} \to \mathbb{R} \]

Tfae:

- \(\mathbb{E}[(V - K)^+] \geq \mathbb{E}[(\tilde{V} - K)^+] \) for all \(K > 0 \).
Excursion: convex – order

\(\mu, \tilde{\mu} \) prob. measures on \(\mathbb{R} \), \(\int_{-\infty}^{\infty} x \, d\mu(x) = \int_{-\infty}^{\infty} x \, d\tilde{\mu}(x) \).

\[\mu \succ c \tilde{\mu} : \iff \int \varphi(x) \, d\mu(x) \geq \int \varphi(x) \, d\tilde{\mu}(x) \text{ for every convex } \varphi : \mathbb{R} \rightarrow \mathbb{R} \]

Tfae:

- \(\mathbb{E}[(V - K)^+] \geq \mathbb{E}[(\tilde{V} - K)^+] \) for all \(K > 0 \).
- \(\mathbb{E}[\varphi(V)] \geq \mathbb{E}[\varphi(\tilde{V})] \) for every convex \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \).
Excursion: convex – order

µ, ˜µ prob. measures on \(\mathbb{R} \), \(\int_{-\infty}^{\infty} x \, d\mu(x) = \int_{-\infty}^{\infty} x \, d\tilde{\mu}(x) \).

\[\mu \succ_{c} \tilde{\mu} : \iff \int \varphi(x) \, d\mu(x) \geq \int \varphi(x) \, d\tilde{\mu}(x) \quad \text{for every convex} \ \varphi : \mathbb{R} \to \mathbb{R} \]

Tfae:

- \(\mathbb{E}[(V - K)^+] \geq \mathbb{E}[(\tilde{V} - K)^+] \) for all \(K > 0 \).
- \(\mathbb{E}[\varphi(V)] \geq \mathbb{E}[\varphi(\tilde{V})] \) for every convex \(\varphi : \mathbb{R} \to \mathbb{R} \).
- \(\text{law}(V) \succ_{c} \text{law}(\tilde{V}) \) in the convex order.
Counterexample

Idea: pick a model such that V is \succeq_c-minimal, i.e. deterministic.
Counterexample

Idea: pick a model such that V is \gtrapprox_c-minimal, i.e. deterministic.

Example: Black–Scholes “mixing” model on $[0, 3]$

\[
\begin{align*}
S_t &= S_0 \exp \left(\int_0^t \sigma_s \, dB_s \right), \\
\sigma_t^2 &= \begin{cases}
2 & \text{if } t \in [0, 1], \\
1 & \text{if } t \in [1, 2], \\
3 & \text{if } t \in [2, 3].
\end{cases}
\end{align*}
\]

$\mathbb{E} = \Rightarrow V = \int_0^3 \sigma_t^2 \, dt \equiv 6.$
Counterexample

Idea: pick a model such that V is \succeq_c-minimal, i.e. deterministic.

Example: Black–Scholes “mixing” model on $[0, 3]$

$$dS_t = S_t \sigma_t dB_t, \quad S_0 = 1.$$
Idea: pick a model such that V is \succeq_c-minimal, i.e. deterministic.

Example: Black–Scholes “mixing” model on $[0, 3]$

$$dS_t = S_t \sigma_t dB_t, \quad S_0 = 1.$$

Fair coin flip $\epsilon = \pm 1$ (independent of B), $\sigma^2 = \sigma_\epsilon^2$,

$$\sigma^2_+(t) := \begin{cases} 2 & \text{if } t \in [0, 1], \\ 3 & \text{if } t \in]1, 2], \\ 1 & \text{if } t \in]2, 3], \end{cases} \quad \sigma^2_-(t) := \begin{cases} 2 & \text{if } t \in [0, 1], \\ 1 & \text{if } t \in]1, 2], \\ 3 & \text{if } t \in]2, 3]. \end{cases}$$

$$\int_0^3 \sigma^2_t(t) dt \equiv 6.$$
Counterexample

Idea: pick a model such that V is \succeq_c-minimal, i.e. deterministic.

Example: Black–Scholes “mixing” model on $[0, 3]$

\[
\begin{align*}
 dS_t &= S_t \sigma_t dB_t, \quad S_0 = 1. \\
 \text{Fair coin flip } \epsilon &= \pm 1 \text{ (independent of } B), \quad \sigma^2 = \sigma^2_{\epsilon}, \\
 \sigma^2_+(t) &: \begin{cases}
 2 & \text{if } t \in [0, 1], \\
 3 & \text{if } t \in]1, 2], \\
 1 & \text{if } t \in]2, 3].
 \end{cases} \\
 \sigma^2_-(t) &: \begin{cases}
 2 & \text{if } t \in [0, 1], \\
 1 & \text{if } t \in]1, 2], \\
 3 & \text{if } t \in]2, 3].
 \end{cases}
\]

\[\implies V = \int_0^3 \sigma^2(t) \, dt \equiv 6.\]
Counterexample / local vol part: \(d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t \)

\[
\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic:}
\]
Counterexample / local vol part: \(d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t \)

\[
\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic:}
\]

(a) \(\tilde{\sigma}^2(t, s) = \mathbb{E}[\sigma^2(t)|S_t = s] \)
Counterexample / local vol part: \(d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t \)

\[\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic:} \]

(a) \(\tilde{\sigma}^2(t, s) = \mathbb{E}[\sigma^2(t) | S_t = s] \)
Counterexample / local vol part: $d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t$

$\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt$ is not deterministic:

(a) $\tilde{\sigma}^2(t, s) = \mathbb{E}[\sigma^2(t) | S_t = s]$

(b) (\tilde{S}_t) has full support.
Counterexample / local vol part: \(d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t \)

\[
\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic:}
\]

(a) \(\tilde{\sigma}^2(t, s) = \mathbb{E}[\sigma^2(t) | S_t = s] \)

(b) \((\tilde{S}_t) \) has full support.
Counterexample / local vol part: $d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t$

$\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt$ is not deterministic:

(a) $\tilde{\sigma}^2(t, s)$

(b) (\tilde{S}_t) has full support.
Counterexample / local vol part: \(d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t \)

\[\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic:} \]

(a) \(\tilde{\sigma}^2(t, s) \) \hspace{2cm} (b) \((\tilde{S}_t) \) has full support.
Counterexample / local vol part: \(d\tilde{S}_t = \tilde{S}_t \tilde{\sigma}(t, \tilde{S}_t) dB_t \)

\[\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \] is not deterministic:

(a) \(\tilde{\sigma}^2(t, s) \)
(b) \((\tilde{S}_t) \) has full support.

for yellow paths: \(\int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t(\omega)) \, dt > 6 \)
Counterexample

\[V = \int_0^3 \sigma(t, \tilde{S}_t) \, dt \equiv 6, \text{ but} \]

\[\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic} \]
Counterexample

\[V = \int_0^3 \sigma(t, \tilde{S}_t) \, dt \equiv 6, \text{ but } \]

\[\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic } \]

\[\Rightarrow V \not\geq_c \tilde{V} \]
Counterexample

\[V = \int_0^3 \sigma(t, \tilde{S}_t) \, dt \equiv 6, \text{ but} \]
\[\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic} \]

\[\Rightarrow V \not\equiv_c \tilde{V} \]

More specific, consider call with strike 6, i.e. \(f(v) := (v - 6)^+ : \)
Counterexample

$$V = \int_0^3 \sigma(t, \tilde{S}_t) \, dt \equiv 6,$$ but

$$\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic}$$

More specific, consider call with strike 6, i.e. $f(v) := (v - 6)^+:$

$$\mathbb{E}[(V - 6)^+] = 0$$
Counterexample

\[V = \int_0^3 \sigma(t, \tilde{S}_t) \, dt \equiv 6, \text{ but} \]

\[\tilde{V} = \int_0^3 \tilde{\sigma}^2(t, \tilde{S}_t) \, dt \text{ is not deterministic} \]

More specific, consider call with strike 6, i.e. \(f(v) := (v - 6)^+ \):

\[\mathbb{E}[(V - 6)^+] = 0 < \mathbb{E}[(\tilde{V} - 6)^+] \]
Some remarks/variations

1. ϵ can be chosen adapted to $\sigma(\xi(B_t))_0 \leq t \leq 3 = \Rightarrow$ generalized Black-Scholes-model, in particular complete.

2. $\sigma(., \omega)$ can be chosen in a continuous/smooth way.

3. Using Gyöngy's result in two dimensions, one obtains a counterexample of (time-inhomogenous) Markovian structure.
Some remarks/variations

1. ϵ can be chosen adapted to $\sigma((B_t))_{0 \leq t \leq 3}$
 \implies generalized Black-Scholes-model, in particular complete.
Some remarks/variations

1. ϵ can be chosen adapted to $\sigma((B_t))_{0 \leq t \leq 3}$ → generalized Black-Scholes-model, in particular complete.

2. $\sigma(., \omega)$ can be chosen in a continuous/smooth way.
Some remarks/variations

1. ϵ can be chosen adapted to $\sigma((B_t))_{0 \leq t \leq 3}$
 \implies generalized Black-Scholes-model, in particular complete.

2. $\sigma(., \omega)$ can be chosen in a continuous/smooth way.

3. Using Gyöngy’s result in two dimensions, one obtains a counterexample of (time-inhomogenous) Markovian structure.
Numerically there is some evidence in favor of $V \gtrapprox c \tilde{V}$:

- experiments by Hans Bühler in the Heston-model
- in the above example we find $E[(V - 6)^+] = 0.026$.

Further assumptions are necessary to rigorously prove $V \gtrapprox c \tilde{V}$.

M. Beiglböck (Universität Wien)
Overprized options in local vol models
June 2010
1. *Numerically* there is some evidence in favor of

\[V \gtrapprox_c \tilde{V} : \]
Numerically there is some evidence in favor of

\[V \succsim_c \tilde{V} : \]

- experiments by Hans Bühler in the Heston-model
1. **Numerically** there is some evidence in favor of

\[V \gtrapprox_c \tilde{V} : \]

- experiments by Hans Bühler in the Heston-model
- in the above example we find

\[\mathbb{E}[(V - 6)^+] = 0, \quad \mathbb{E}[(\tilde{V} - 6)^+] \approx 0.026. \]
1. Numerically there is some evidence in favor of

\[V \gtrapprox c \tilde{V} : \]

- Experiments by Hans Bühler in the Heston-model
- In the above example we find

\[\mathbb{E}[(V - 6)^+] = 0, \quad \mathbb{E}[(\tilde{V} - 6)^+] \approx 0.026. \]

2. Further assumptions are necessary to rigorously prove

\[V \gtrapprox_c \tilde{V}. \]