Contagion and Confusion in Credit Markets

Jeff Hamrick
(joint work with M.S. Taqqu)

Rhodes College

June 24, 2010
What is Contagion?

▶ There are many definitions of financial contagion (Pericoli & Sbracia 2001).
What is Contagion?

- There are many definitions of financial contagion (Pericoli & Sbracia 2001).

- Qualitatively, we will say that there is contagion from market X (or time series X) to another market Y (or time series Y) if X and Y are *more dependent* during times of crisis than during normal, calmer times.
What is Contagion?

▶ There are many definitions of financial contagion (Pericoli & Sbracia 2001).

▶ Qualitatively, we will say that there is contagion from market \(X \) (or time series \(X \)) to another market \(Y \) (or time series \(Y \)) if \(X \) and \(Y \) are *more dependent* during times of crisis than during normal, calmer times.

▶ Question: How do we measure dependence between two time series?
The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ.
The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ.

- ρ measures the linear dependence between two random variables X and Y.
The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ.

- ρ measures the linear dependence between two random variables X and Y.
- ρ (or an analogue) characterizes the joint distribution of X and Y if and only if the joint distribution of X and Y is elliptical.
The Pearson correlation coefficient

Answer: The conventional way is with the usual correlation coefficient ρ.

- ρ measures the *linear* dependence between two random variables X and Y.
- ρ (or an analogue) characterizes the joint distribution of X and Y if and only if the joint distribution of X and Y is elliptical.
- ρ is constant.
Linear Models in Finance

Pearson’s ρ is especially suitable for linear factor models in finance, i.e., linear regression models.
Linear Models in Finance

Pearson’s ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where
Pearson’s ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

- α and β are constants
- ϵ_t is a sequence of independent, identically distributed, centered Gaussian random variables with variance σ^2
Linear Models in Finance

Pearson’s ρ is especially suitable for linear factor models in finance, i.e., linear regression models.

Example: $Y_t = \alpha + \beta X_t + \epsilon_t$, where

- α and β are constants
- ϵ_t is a sequence of independent, identically distributed, centered Gaussian random variables with variance σ^2
- X_t is, for example, the excess returns of the market (S&P 500)
- Y_t is, for example, the returns of Caterpillar stock
Contagion or Confusion?
Contagion or Confusion?
Let
\[m(x) := \mathbb{E}(Y | X = x) = \alpha + \beta x \] (1)
with regression slope \(m'(x) = \beta \).
Extending the Linear Model

Let

\[m(x) := \mathbb{E}(Y|X = x) = \alpha + \beta x \quad (1) \]

with regression slope \(m'(x) = \beta \). It also follows that the regression slope \(\beta = \rho\sigma_Y / \sigma_X \) and therefore that

\[\rho = \beta \sigma_X / \sigma_Y . \quad (2) \]
From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2.\[\sigma_Y^2 = \beta^2 \sigma_X^2 + \sigma^2 \] And hence \[\rho = \frac{\beta^2 \sigma_X}{\sigma^2 \sqrt{\beta^2 \sigma_X^2 + \sigma^2}} \frac{1}{\sqrt{2}}.\]
Extending the Linear Model

From linear regression theory, we know that we can write the variance σ_Y^2 of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma_X^2$) and the residual (unexplained) variance σ^2. In other words,

$$\sigma_Y^2 = \beta^2 \sigma_X^2 + \sigma^2$$ \hspace{1cm} (3)
Extending the Linear Model

From linear regression theory, we know that we can write the variance σ^2_Y of Y as a sum of the variance explained by the regression (namely, $\beta^2 \sigma^2_X$) and the residual (unexplained) variance σ^2. In other words,

$$\sigma^2_Y = \beta^2 \sigma^2_X + \sigma^2$$ \hspace{1cm} (3)

and hence

$$\rho = \sigma_X \beta / (\sigma^2_X \beta^2 + \sigma^2)^{1/2}.$$ \hspace{1cm} (4)
Extending the Linear Model

We now extend the usual linear regression model

\[Y_t = \alpha + \beta X_t + \epsilon_t \] \hspace{1cm} (5)
We now extend the usual linear regression model

\[Y_t = \alpha + \beta X_t + \epsilon_t \]

(5)

to

\[Y_t = m(X_t) + \sigma(X_t)\epsilon_t \]

(6)
Extending the Linear Model

We now extend the usual linear regression model

\[Y_t = \alpha + \beta X_t + \epsilon_t \] \hspace{1cm} (5)

to

\[Y_t = m(X_t) + \sigma(X_t)\epsilon_t \] \hspace{1cm} (6)

and the usual correlation coefficient to

\[\rho(x) = \sigma_X \beta(x) / (\sigma_X^2 \beta(x)^2 + \sigma^2(x))^{1/2} \] \hspace{1cm} (7)

where \(m \) and \(\sigma \) are smooth real-valued functions.
We call ρ the *local correlation function*:

$$
\rho(x) = \frac{\sigma_X \beta(x)}{(\sigma_X^2 \beta(x)^2 + \sigma^2(x))^{1/2}}.
$$

(8)
We call ρ the *local correlation function*:

$$\rho(x) = \frac{\sigma_X \beta(x)}{\sigma_X^2 \beta(x)^2 + \sigma^2(x))^{1/2}}. \quad (8)$$

- σ_X denotes the unconditional standard deviation of X
- $\beta(x) = m'(x)$ is the slope of the regression function $m(x)$
- $\sigma^2(x) = \text{Var}(Y|X = x)$ is the scedastic function
A Spatial Definition of Contagion

Let

- X_t be U.S. stock market returns
- Y_t be French stock market returns
A Spatial Definition of Contagion

Let

- X_t be U.S. stock market returns
- Y_t be French stock market returns

Moreover, let

- $x_L = F_X^{-1}(0.025)$ be a lower quantile of X; and
- $x_M = F_X^{-1}(0.50)$ be a median quantile of X.
A Spatial Definition of Contagion

Let

- X_t be U.S. stock market returns
- Y_t be French stock market returns

Moreover, let

- $x_L = F_X^{-1}(0.025)$ be a lower quantile of X; and
- $x_M = F_X^{-1}(0.50)$ be a median quantile of X.

Then we say that there is 	extit{contagion from X to Y} if $\rho(x_L) > \rho(x_M)$.
Developing the Hypothesis Test

We state the relevant hypothesis test:

\[H_0: \rho(x_L) \leq \rho(x_M) \text{ (no contagion)} \]
\[H_1: \rho(x_L) > \rho(x_M) \text{ (contagion)}. \]
Developing the Hypothesis Test

We state the relevant hypothesis test:

\[H_0: \rho(x_L) \leq \rho(x_M) \text{ (no contagion)} \]
\[H_1: \rho(x_L) > \rho(x_M) \text{ (contagion)}. \]

which is facilitated by the fact that, under certain limiting conditions,

\[\hat{\rho}(x) \overset{D}{\to} \mathcal{N}(\rho(x), \hat{\sigma}_{\hat{\rho}(x)}). \] \hspace{1cm} (9)
Additionally, $\hat{\rho}(x_M)$ and $\hat{\rho}(x_L)$ are asymptotically independent, so long as $x_M \neq x_L$.
Developing the Hypothesis Test

- Additionally, \(\hat{\rho}(x_M) \) and \(\hat{\rho}(x_L) \) are asymptotically independent, so long as \(x_M \neq x_L \).

- We obtain, by approximating \(\hat{\sigma}^2 \hat{\rho}(x_M) \) and \(\hat{\sigma}^2 \hat{\rho}(x_L) \), a Studentized test statistic:

\[
Z = \frac{\hat{\rho}(x_L) - \hat{\rho}(x_M)}{\sqrt{\hat{\sigma}^2 \hat{\rho}(x_L) + \hat{\sigma}^2 \hat{\rho}(x_M)}} \tag{10}
\]
Take X_t and Y_t to be U.S. and French stock market returns, respectively.
What Might Confusion Be?

Let $x_M = F_X^{-1}(0.50)$ be a median quantile of X and let x_T be a tail quantile of X_t associated with crisis.
What Might Confusion Be?

Let $x_M = F_X^{-1}(0.50)$ be a median quantile of X and let x_T be a tail quantile of X_t associated with crisis.

We say there is *confusion* from X to Y if

1. $\rho(x_M) > \rho(x_T)$ and
2. $\rho(x_T) = 0.$
Intuition for Confusion

\[\rho(x) \]

\[x_M \]

\[x_U \]

A Definition of Confusion

Example: U.S. and French Equity Markets

Contagion or Confusion?
A Hypothesis Test For Confusion?

- We can execute the hypothesis test

\[H_0: \rho(x_T) \geq \rho(x_M) \]
\[H_1: \rho(x_T) < \rho(x_M) \]
We can execute the hypothesis test

\[H_0: \rho(x_T) \geq \rho(x_M) \]
\[H_1: \rho(x_T) < \rho(x_M) \]

and, separately, determine if a 95% confidence interval around \(\hat{\rho}(x_T) \) includes the origin.
A Hypothesis Test For Confusion?

- We can execute the hypothesis test

\[H_0: \rho(x_T) \geq \rho(x_M) \]
\[H_1: \rho(x_T) < \rho(x_M) \]

and, separately, determine if a 95% confidence interval around \(\hat{\rho}(x_T) \) includes the origin.

- We call this approach the *asymptotic approach*, because it uses the asymptotic behavior of \(\hat{\rho}(x) \).
A Minor Dependence Problem

The events

\[
\{ \omega \in \Omega : \hat{\rho}(x_M) > \hat{\rho}(x_T) \}
\]

(11)
A Minor Dependence Problem

The events

\[\{ \omega \in \Omega : \hat{\rho}(x_M) > \hat{\rho}(x_T) \} \] \hspace{1cm} (11)

and

\[\{ \omega \in \Omega : 0 \in \left(\hat{\rho}(x_T) - 1.96\hat{\sigma}_{\hat{\rho}(x_T)}, \hat{\rho}(x_T) + 1.96\hat{\sigma}_{\hat{\rho}(x_T)} \right) \} \] \hspace{1cm} (12)
The events

$$\{ \omega \in \Omega : \hat{\rho}(x_M) > \hat{\rho}(x_T) \}$$ \hspace{1cm} (11)

and

$$\left\{ \omega \in \Omega : 0 \in \left(\hat{\rho}(x_T) - 1.96\hat{\sigma}_{\hat{\rho}(x_T)}, \hat{\rho}(x_T) + 1.96\hat{\sigma}_{\hat{\rho}(x_T)} \right) \right\}$$ \hspace{1cm} (12)

are dependent.
A Bootstrapping Approach

We take the raw data and create a bootstrap of the data by resampling from the data with replacement \(n \) times.
A Bootstrapping Approach

- We take the raw data and create a bootstrap of the data by resampling from the data with replacement \(n \) times.

- We do this \(N \) times. Denote the set of bootstraps by \(\{B_1, B_2, \ldots, B_N\} \), where

\[
B_i = \{(X_{i,1}, Y_{i,1}), (X_{i,1}, Y_{i,1}), \ldots, (X_{i,n}, Y_{i,n})\}. \quad (13)
\]

\[
\hat{\rho}_i(x_M), \hat{\rho}_i(x_T), \hat{\sigma}_i, \hat{\rho}(x_M), \hat{\sigma}_i, \hat{\rho}(x_T) \quad (14)
\]
A Bootstrapping Approach

- We take the raw data and create a bootstrap of the data by resampling from the data with replacement \(n \) times.

- We do this \(N \) times. Denote the set of bootstraps by \(\{B_1, B_2, \ldots, B_N\} \), where

\[
B_i = \{(X_{i,1}, Y_{i,1}), (X_{i,1}, Y_{i,1}), \ldots, (X_{i,n}, Y_{i,n})\}. \tag{13}
\]

- For each bootstrap \(B_i \), we ultimately generate estimates

\[
\left(\hat{\rho}_i(x_M), \hat{\rho}_i(x_T), \hat{\sigma}_i, \hat{\rho}(x_M), \hat{\sigma}_i, \hat{\rho}(x_T) \right) \tag{14}
\]
A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$\hat{\rho}_i(x_M) - 1.96\hat{\sigma}_i(x_M) > \hat{\rho}_i(x_T) + 1.96\hat{\sigma}_i(x_T)$$ \hspace{1cm} (15)

and

$$\hat{\rho}_i(x_M) - 1.96\hat{\sigma}_i(x_M) < \hat{\rho}_i(x_T) - 1.96\hat{\sigma}_i(x_T).$$ \hspace{1cm} (16)
We count, over all N bootstraps, the number of times in which

$$\hat{\rho}_i(x_M) - 1.96\hat{\sigma}_i,\hat{\rho}(x_M) > \hat{\rho}_i(x_T) + 1.96\hat{\sigma}_i,\hat{\rho}(x_T)$$

(15)

and

$$\hat{\rho}_i(x_T) - 1.96\hat{\sigma}_i,\hat{\rho}(x_T) < 0 < \hat{\rho}_i(x_T) + 1.96\hat{\sigma}_i,\hat{\rho}(x_T).$$

(16)
A Bootstrapping Approach

We count, over all N bootstraps, the number of times in which

$$\hat{\rho}_i(x_M) - 1.96\hat{\sigma}_i,\hat{\rho}(x_M) > \hat{\rho}_i(x_T) + 1.96\hat{\sigma}_i,\hat{\rho}(x_T)$$

(15)

and

$$\hat{\rho}_i(x_T) - 1.96\hat{\sigma}_i,\hat{\rho}(x_T) < 0 < \hat{\rho}_i(x_T) + 1.96\hat{\sigma}_i,\hat{\rho}(x_T).$$

(16)

We call the proportion of bootstraps satisfying these two conditions an empirical estimate of the *probability of confusion*.
7 Years of Credit Default Swap History

Historical credit default swap premia for Bear Stearns, Ambac, Citigroup, J.P. Morgan Chase, and Freddie Mac.
Results

Covariate X is the daily percentage change in Bears Stearns CDS.

<table>
<thead>
<tr>
<th>Dependent</th>
<th>$\hat{\rho}(x_M)$</th>
<th>$\hat{\rho}(x_U)$</th>
<th>$\sigma_{\hat{\rho}(x_M)}$</th>
<th>$\sigma_{\hat{\rho}(x_U)}$</th>
<th>$Z_{\hat{\rho}(x_U) - \hat{\rho}(x_M)}$</th>
<th>$P(\text{Confusion})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Bank (Subordinated)</td>
<td>0.3438</td>
<td>0.2744</td>
<td>0.0378</td>
<td>0.0942</td>
<td>-0.6832</td>
<td>0.005</td>
</tr>
<tr>
<td>J.P. Morgan Chase</td>
<td>0.6880</td>
<td>0.5382</td>
<td>0.0213</td>
<td>0.0802</td>
<td>-1.8040</td>
<td>0.059</td>
</tr>
<tr>
<td>Fannie Mae</td>
<td>0.4147</td>
<td>0.3044</td>
<td>0.0396</td>
<td>0.1037</td>
<td>-0.9934</td>
<td>0.078</td>
</tr>
<tr>
<td>Freddie Mac</td>
<td>0.3978</td>
<td>0.2671</td>
<td>0.0406</td>
<td>0.1075</td>
<td>-1.1375</td>
<td>0.099</td>
</tr>
<tr>
<td>Countrywide</td>
<td>0.5956</td>
<td>0.4146</td>
<td>0.0259</td>
<td>0.0858</td>
<td>-2.0314*</td>
<td>0.002</td>
</tr>
<tr>
<td>Bank of America</td>
<td>0.5794</td>
<td>0.3793</td>
<td>0.0296</td>
<td>0.1017</td>
<td>-1.8885</td>
<td>0.009</td>
</tr>
<tr>
<td>Ambac Assurance</td>
<td>0.3628</td>
<td>0.3900</td>
<td>0.0400</td>
<td>0.0880</td>
<td>0.2818</td>
<td>0.000</td>
</tr>
<tr>
<td>Ambac Financial Group</td>
<td>0.3709</td>
<td>0.2797</td>
<td>0.0401</td>
<td>0.1008</td>
<td>-0.8413</td>
<td>0.095</td>
</tr>
<tr>
<td>Lehman Brothers</td>
<td>0.8731</td>
<td>0.7204</td>
<td>0.0074</td>
<td>0.0583</td>
<td>-2.5981*</td>
<td>0.000</td>
</tr>
<tr>
<td>Citigroup</td>
<td>0.5797</td>
<td>0.4260</td>
<td>0.0296</td>
<td>0.0955</td>
<td>-1.5372</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Confusion from Countrywide CDS to Ambac CDS?

Credit Default Swap Premia

J. Hamrick

Contagion or Confusion?
Conclusions

- There is no evidence of spatial contagion in credit markets.
Conclusions

- There is no evidence of spatial contagion in credit markets.
- There is limited evidence of a condition stronger than the absence of contagion, which we call *confusion*.
Conclusions

- There is no evidence of spatial contagion in credit markets.

- There is limited evidence of a condition stronger than the absence of contagion, which we call *confusion*.

- Diversified bond and fixed-income derivative investors do not have to worry about “all correlations going to one” during crises.
References

