Pricing Synthetic CDOs Based on Exponential Approximations to the Payoff Function

Ian Iscoe
Quantitative Research, Algorithmics, Inc.

Alex Kreinin
Quantitative Research, Algorithmics, Inc.

Ken Jackson
Dept. of Computer Science, University of Toronto

Xiaofang Ma
Bank of Montreal, Toronto

Bachelier Congress
Toronto, Canada
June 24, 2010
1. Introduction: brief review of CDO structure & pricing
2. Basic problem
3. Comparison of approaches: traditional vs EAP
4. Application to CDOs
5. Pros & Cons
6. Source of exponential approximation
1.1 Synthetic CDO structure

Pool

Each N_k, N_k', N_k'' represents a counterparty or a financial instrument in the pool, leading to default losses as indicated by the arrow labeled "Default Losses" leading to the CDO.
1.1 Synthetic CDO structure

Pool

N_1 N_2

......

N_k

......

N_K

CDO

N_k'' N_k'

Default Losses
1.1 Synthetic CDO structure

Pool

\[N_1, N_2, \ldots, N_k, \ldots, N_K \]

Default Losses

CDO
1.1 Synthetic CDO structure

Pool

Default Losses

CDO

tranche

S

\(u \)

\(\ell \)
1.1 Synthetic CDO structure

Pool

N₁ N₂

.....

Nₖ

N₉

Default Losses

CDO

S

tranche

u

ℓ

Premiums

t₀ = 0 t_{i−1} t_i t_n = T : Premium dates t_i, 1 ≤ i ≤ n

Premium for ith period (due at t_i) ∝ (S - tranche losses up to t_i)

const. = s × (t_i - t_{i−1}); s: "spread"
1.2 Synthetic CDO: Structure summary for pricing

General assumptions

- Constant fair spread rate, \(s \);
- Fixed premium times after today \((t_0) : 0 = t_0 < t_1 < t_2 < \cdots < t_n \);
- Deterministic discount factors, \(d_i \), corresponding to \(t_i \);
- Credit events occur only “at” each premium date;
- Static underlying pool.

Notation

- \(\mathcal{L}_i^{(k)} := \text{loss on } k\text{th name, up to time } t_i \);
- \(\mathcal{L}_i := \sum_{k=1}^{K} \mathcal{L}_i^{(k)} \): pool's cumulative losses up to time \(t_i \);
- \(\ell \): attachment point of the tranche;
- \(u \): detachment point of the tranche;
- \(S := u - \ell \): thickness of the tranche;
- \(L_i = \min (S, (\mathcal{L}_i - \ell)^+) \): tranche loss up to time \(t_i \).
1.3 CDO tranche payoff function

\[S = \begin{cases} 0 & \text{if } \ell \leq \text{Pool loss} \leq u \\ \text{max pool loss: } \sum_{k=1}^{K} N_k & \text{if } \text{Pool loss} > u \end{cases} \]
1.4 Synthetic CDO: Pricing equations

Swap Equations

\[PV[\text{Default leg}] = \sum_{i=1}^{n} E[(L_i - L_{i-1})d_i] \]

\[PV[\text{Premium leg}] = s \sum_{i=1}^{n} E[(S - L_i)(t_i - t_{i-1})d_i] \]

\(s \) from setting: \(PV[\text{Default leg}] = PV[\text{Premium leg}] \)

Value to protection seller = \(PV[\text{Premium leg}] - PV[\text{Default leg}] \)
1.4 Synthetic CDO: Pricing equations

Swap Equations

PV[Default leg] = \sum_{i=1}^{n} \mathbb{E}[(L_i - L_{i-1})d_i] = \sum_{i=1}^{n} (\mathbb{E}[L_i] - \mathbb{E}[L_{i-1}])d_i

PV[Premium leg] = s \sum_{i=1}^{n} \mathbb{E}[(S - L_i)(t_i - t_{i-1})d_i] = s \sum_{i=1}^{n} (S - \mathbb{E}[L_i])(t_i - t_{i-1})d_i

s from setting: PV[Default leg] = PV[Premium leg]

Value to protection seller = PV[Premium leg] - PV[Default leg]
1.4 Synthetic CDO: Pricing equations

Swap Equations

\[
\text{PV[Default leg]} = \sum_{i=1}^{n} E[(L_i - L_{i-1})d_i] = \sum_{i=1}^{n} (E[L_i] - E[L_{i-1}])d_i
\]

\[
\text{PV[Premium leg]} = s \sum_{i=1}^{n} E[(S - L_i)(t_i - t_{i-1})d_i] = s \sum_{i=1}^{n} (S - E[L_i])(t_i - t_{i-1})d_i
\]

\(s\) from setting: \(\text{PV[Default leg]} = \text{PV[Premium leg]}\)

Value to protection seller = \(\text{PV[Premium leg]} - \text{PV[Default leg]}\)

Essential Calculation

\[
E[L_i] \equiv E[f(L_i)] \equiv E\left[f\left(\sum_{k=1}^{K} \mathcal{L}_i^{(k)}\right)\right]
\]

where

\[
f(z) = f(z; \ell, u) = \min(u - \ell, (z - \ell)^+)
\]
2. Basic problem (abstracted)

- **Setting**: conditional independence framework; i.e.,
 - family of non-negative r.v.’s Z_k, which are conditionally independent, conditional on some auxiliary r.v. (possibly vectorial), \mathcal{M}, with distribution $\Phi(\mathcal{M})$.
 - payoff function f, evaluated on $Z := \sum_{k=1}^{K} Z_k$.
2. Basic problem (abstracted)

• **Setting:** conditional independence framework; i.e.,

 - family of non-negative r.v.’s Z_k which are conditionally independent, conditional on some auxiliary r.v. (possibly vectorial), \mathcal{M}, with distribution $\Phi(M)$.

 - payoff function f, evaluated on $Z := \sum_{k=1}^{K} Z_k$.

• **Essential numerical aspect:** Efficient and accurate evaluation of

 \[
 \mathbf{E}_M[f(Z)] = \mathbf{E}[f(Z) \mid \mathcal{M} = M] \tag{1}
 \]

 leading to an evaluation of

 \[
 \mathbf{E}[f(Z)] = \int \mathbf{E}_M[f(Z)] d\Phi(M).
 \]
3.1 Comparison of approaches

- Two types of approaches
- Each addresses conditional expectation (1) differently
- Final integration (over \mathcal{M}) is the same for both types
3.1 Comparison of approaches

- Two types of approaches
- Each addresses conditional expectation (1) differently
- Final integration (over M) is the same for both types

Traditional approach

1. Compute the conditional distribution Ψ_M of Z, conditional on M, using either FFT, recursion, or some approximation method.

2. Compute the conditional expectation $E_M[f(Z)]:$

 $$E_M[f(Z)] = \int f(z) \, d\Psi_M(z)$$

3. (Integrate the conditional expectation over M.)
3.2 Comparison of approaches (cont’d)

EAP approach

1. Approximate the non-smooth function f by a finite sum of exponentials.

2. Approximate the conditional expectation $E_M[f(Z)]$ via explicit* evaluation of $E_M[\exp(cZ_k)]$. (*Assumption!) No Ψ_M is necessary.

3. (Integrate the conditional expectation over M.)
3.2 Comparison of approaches (cont’d)

EAP approach

1. Approximate the non-smooth function \(f \) by a finite sum of exponentials.

2. Approximate the conditional expectation \(\mathbb{E}_M[f(Z)] \) via explicit* evaluation of \(\mathbb{E}_M[\exp(cZ_k)] \). (*Assumption!) No \(\Psi_M \) is necessary.

3. (Integrate the conditional expectation over \(M \).)

2. (reprise) Details:

\[
f(z) \approx \sum_{n=1}^{N} w_n \exp(c_n z)
\]

\[
\mathbb{E}_M[f(Z)] \approx \sum_{n=1}^{N} w_n \mathbb{E}_M[\exp(c_n Z)]
\]

\[
= \sum_{n=1}^{N} w_n \mathbb{E}_M \left[\prod_{k=1}^{K} \exp(c_n Z_k) \right] = \sum_{n=1}^{N} w_n \prod_{k=1}^{K} \mathbb{E}_M[\exp(c_n Z_k)].
\]
4.1 EAP applied to CDO: Reduction of payoff function to hockey-stick function

For CDO,

\[f(z) = f(z; \ell, u) = u \left[1 - h\left(\frac{z}{u} \right) \right] - \ell \left[1 - h\left(\frac{z}{\ell} \right) \right], \]

where \(h(x) = 1 - x \) if \(x \leq 1 \), 0 otherwise. ("Hockey-stick function")
Suppose
\[h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x), \]

where \(\omega_n \) and \(\gamma_n \) are (in general) complex numbers.

Then
\[
E_M[f(Z)] \approx (u - \ell) - u \sum_{n=1}^{N} \omega_n \prod_{k=1}^{K} E_M\left[\exp\left(\frac{\gamma_n}{u} Z_k \right) \right] + \ell \sum_{n=1}^{N} \omega_n \prod_{k=1}^{K} E_M\left[\exp\left(\frac{\gamma_n}{\ell} Z_k \right) \right]
\]

Note: Only \(E_M[\exp(cZ_k)] \) of individual names are computed, where \(c = \frac{\gamma_n}{\ell} \) or \(\frac{\gamma_n}{u} \).
EAP approach reduces to the uniform approximation problem:

\[h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x), \]

where \(\omega_n \) and \(\gamma_n \) are complex numbers. E.g., with \(N = 25 \):

Parameters \(\gamma_n \) and \(\omega_n \) for the 25-term approximation.
4.4 Plots of two approximations to h

Left panel: 5-term exponential approximation; Right panel: 49-term exponential approximation

The maximum absolute error in the approximation is roughly proportional to $1/N$:

<table>
<thead>
<tr>
<th>N</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max absolute error</td>
<td>6.4e-3</td>
<td>3.2e-3</td>
<td>1.6e-3</td>
<td>8e-4</td>
<td>4e-4</td>
</tr>
</tbody>
</table>
5. Pros and cons of EAP approach

Pros
• Faster than traditional approach for:
 ➢ single tranches
 ➢ very heterogeneous pools
 ➢ large pools

 Ex. EAP-50: 10 x faster for first 4 tranches of one real CDO with 140-name, very heterogeneous* pool (\(\text{LGD varied from LGD}_{\text{min}} \text{ to } \text{LGD}_{\text{max}} = 7 \times \text{LGD}_{\text{min}} \))
• Quite accurate (e.g., with 50 exp terms, spreads observed correct to within 1 bp; for all but highest tranche: < 0.5% rel error)
• No rounding of losses, as in many versions of the traditional approach
• EA can be calculated once, stored, then used for many pools
• Sensitivities (e.g., of spreads to PDs) are easily incorporated

Cons
• Slower than traditional approach for:
 ➢ multiple tranches (> 3)
 ➢ highest tranche (requires very large number [~200] of exp terms)
 ➢ very homogeneous pools
6.1 Source of Exponential Approximation

Revised notation

- $M: 2M + 1 = \#$ points in partition of $[0, 1]: \left\{ \frac{k}{2M} : 0 \leq k \leq 2M \right\}$
- h: any continuous function on $[0, 1]$
- $h_k := h\left(\frac{k}{2M}\right)$

Discretisation

For $h(x) \approx \sum_{n=1}^{N} \omega_n \exp(\gamma_n x)$, set $\zeta_n = \exp(\gamma_n/2M)$.

Consider discretised problem:

$$h_k = \sum_{n=1}^{N} \omega_n \zeta_n^k, \quad 0 \leq k \leq 2M, \quad \text{(equality!)}$$

where N, ζ_n, ω_n TBD, $1 \leq n \leq N$.
6.2 Source of EA (cont’d)

Gaspard de Prony (~1795)

3. Set \(\{\zeta_1, \zeta_2, \ldots, \zeta_N\} \) to be roots of some polynomial equation

\[
\sum_{k=0}^{N} q_k \zeta^k = 0.
\]

4. Solve for \(\omega_1, \omega_2, \ldots, \omega_N \) as solution to linear equations

\[
h_k = \sum_{n=1}^{N} \omega_n \zeta_n^k, \quad 0 \leq k \leq N - 1. \quad (\ast)
\]

Require (\ast) also holds (by induction) for \(N \leq k \leq 2M \).
6.2 Source of EA (cont’d)

Gaspard de Prony (~1795)

1. Form $(M + 1) \times (M + 1)$ Hankel matrix H: $H_{kn} = h_{k+n}$.

2. Find $(M + 1)$-vector q s.t. $Hq = 0$, with $q_N = -1$; $q_n = 0$, $n \geq N$.
 This is a recurrence relation of length N for h_k:

 $$h_{N+k} = \sum_{m=0}^{N-1} q_m h_{k+m}.$$

3. Set $\{\zeta_1, \zeta_2, \ldots, \zeta_N\}$ to be roots of polynomial equation

 $$\sum_{k=0}^{N} q_k \zeta^k = 0.$$

4. Solve for $\omega_1, \omega_2, \ldots, \omega_N$ as solution to linear equations

 $$h_k = \sum_{n=1}^{N} \omega_n \zeta_n^k, \quad 0 \leq k \leq N - 1. \quad (*)$$

Then $(*)$ also holds (by induction) for $N \leq k \leq 2M$.
6.3 Source of EA (cont’d)

Shortcomings

• Numerical nullspace of H is usually very large \rightarrow numerical instability.

• System (\ast) can be extremely ill-conditioned.

Beylkin & Monzón (2005)

Replace equation $Hq = 0$ with $Hu = \sigma \tilde{u}$ where $\sigma \equiv \sigma_N > 0$ and is small (entailing N large). It turns out that error of approximation

$$\max_k \left| h_k - \sum_{n=1}^{N} \omega_n \zeta_k^n \right|$$

is controlled by the smallest positive σ_N.
6.4 Source of EA (cont’d)

Beylkin-Monzón Algorithm for hockey-stick function \((N \mapsto N + 1 \equiv \mathcal{N}, \ M = \mathcal{N})\)

1. Input \(\epsilon\) as given accuracy.

2. Find the smallest \(\mathcal{N}\) such that \(\mathcal{N} \geq \frac{1}{4\epsilon}\).

3. Compute the spectral decomposition of the matrix \(\mathcal{H}_N: \ \mathcal{H}_\mathcal{N} = U \Lambda U^T\). Let \(u = (u_0, u_1, \ldots, u_{\mathcal{N}-1})^T\) be the last column of \(U\). (\(|\lambda| \downarrow\) down diag(\(\Lambda\))

4. Find all roots \(\zeta_1, \zeta_2, \ldots, \zeta_{\mathcal{N}-1}\) of the polynomial equation: \(\sum_{m=0}^{\mathcal{N}-1} u_m \zeta^m = 0\).

5. Solve (least-squares) linear system, for \(\omega_n\): \(h_m = \sum_{n=1}^{\mathcal{N}-1} \omega_n \zeta_n^m, \ 0 \leq m \leq 2\mathcal{N}\).

6. Compute \(\gamma_n\) according to \(\gamma_n = 2\mathcal{N} \log \zeta_n\).

\[\mathcal{H}_\mathcal{N} := \begin{bmatrix}
\mathcal{N} & \mathcal{N} - 1 & \cdots & 1 \\
\mathcal{N} - 1 & \mathcal{N} - 2 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
1 & 0 & \cdots & 0
\end{bmatrix}\]

Remarks:

- \(h\) considered on \([0, 2]\), rescaled to \([0, 1]\).
- \(\frac{1}{\mathcal{N}} \mathcal{H}_\mathcal{N}\) is upper right block of \(H\); rest is 0s.
References

