Efficient Risk Estimation via Nested Sequential Simulation

Mark Broadie, Columbia University

Joint work with Yiping Du and Ciamac Moallemi

Bachelier Finance Society

June 24, 2010
Risk Measurement

Security positions today

- Hundreds or thousands of securities
- Stocks, bonds, options, swaps, structured products
- Equities, fixed income, foreign exchange, commodities

Security values at risk horizon τ

- Multiple underlying financial factors
- Financial model: distribution of factors at τ
- Security prices at τ in state ω
- Prices depend on cashflows from time τ to T
- Distribution of portfolio losses $L(\omega)$

Risk measure

- Distribution of losses $L(\omega)$ is mapped to a risk measure $\rho(L)$
The Risk Measurement Problem

- Today: $t = 0$

- Risk horizon: $t = \tau$

- ω = state at time τ

- $L(\omega)$ = portfolio loss at time τ, given state ω

- $L(\omega)$ depends on realized cashflows between τ and T

- Risk measure $\rho(L)$ ∈ \mathbb{R}

- Probability of large loss: $P(L \geq c)$

- $\text{VAR}_\alpha(L) = \inf \left\{ c : P(L \geq c) \leq \alpha \right\}$

- $\text{CVAR}_\alpha(L) = E[L | L \geq \text{VAR}_\alpha(L)]$

Broadie, Du and Moallemi: *Risk Estimation via Nested Sequential Simulation*
The Risk Measurement Problem

- Today: $t = 0$
- Risk horizon: $t = \tau$

\[L(\omega) = \text{portfolio loss at time } \tau, \text{ given state } \omega \]
The Risk Measurement Problem

- Today: \(t = 0 \)
- Risk horizon: \(t = \tau \)

\[\omega = \text{state at time } \tau \]

\[L(\omega) = \text{portfolio loss at time } \tau, \text{ given state } \omega \]

- \(L(\omega) \) depends on realized cashflows between \(\tau \) and \(T \)
The Risk Measurement Problem

- Today: $t = 0$
- Risk horizon: $t = \tau$

$\omega =$ state at time τ

$L(\omega) =$ portfolio loss at time τ, given state ω

- $L(\omega)$ depends on realized cashflows between τ and T
- Risk measure $\rho(L) \in \mathbb{R}$

Probability of large loss: $P(L \geq c)$

$\text{VAR}_\alpha(L) = \inf \{c \mid P(L \geq c) \leq \alpha\}$

$\text{CVAR}_\alpha(L) = \mathbb{E}[L \mid L \geq \text{VAR}_\alpha(L)]$

Coherent risk measures ...
Related Literature

- Uniform nested simulation
 - Lee (1998)
 - Gordy and Juneja (2006, 2008)

- Importance sampling
 - Glasserman, Heidelberger, Shahabuddin (2000)

- Stochastic kriging
 - Liu and Staum (2009)
The Risk Measurement Problem

- Simulate $\omega_1, \ldots, \omega_n$
The Risk Measurement Problem

- Simulate $\omega_1, \ldots, \omega_n$
- For each ω_i: simulate future portfolio cashflows $\hat{Z}_{i,1}, \ldots, \hat{Z}_{i,m}$

\[
\hat{L}_i = \frac{1}{m} \sum_{j=1}^{m} \hat{Z}_{i,j}
\]

estimate of loss $L(\omega_i)$
• Simulate $\omega_1, \ldots, \omega_n$

• For each ω_i: simulate future portfolio cashflows $\hat{Z}_{i,1}, \ldots, \hat{Z}_{i,m}$

$\hat{L}_i = \frac{1}{m} \sum_{j=1}^{m} \hat{Z}_{i,j}$ \hspace{1cm} \text{estimate of loss $L(\omega_i)$}

• Estimate probability of loss

$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\}$
Probability of Loss: Gaussian Example

- First stage: \(L(\omega_i) = \omega_i \), where \(\omega_i \sim N(0, \sigma_1^2) \)

- Second stage: \(Z_{i,j} = \omega_i + \epsilon_{i,j} \), where \(\epsilon_{i,j} \sim N(0, \sigma_2^2) \)

- Probability of loss: \(\alpha = P(L \geq c) = \Phi(-c/\sigma_1) \)

Estimator: \(\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \) where \(\hat{L}_i = L_i + \frac{1}{m} \sum_{j=1}^{m} \hat{Z}_{i,j} \)

Mean-Squared Error (MSE):

\[
\text{MSE} = E[(\hat{\alpha} - \alpha)^2]
= E[(\hat{\alpha} - E(\hat{\alpha}))^2] + (E[\hat{\alpha} - \alpha])^2
= \text{Variance} + \text{Bias}^2
\]
For $L_i > c$, $\mathbf{1}_{\{L_i \geq c\}} = 1$, but $E[\mathbf{1}_{\{\hat{L}_i \geq c\}}] = P(\hat{L}_i \geq c) < 1$. The local bias is negative: $E[\mathbf{1}_{\{\hat{L}_i \geq c\}} - 1] < 0$.

Broadie, Du and Moallemi: *Risk Estimation via Nested Sequential Simulation*
For $L_i < c$, $\mathbf{1}\{L_i \geq c\} = 0$, but $E[\mathbf{1}\{\hat{L}_i \geq c\}] = P(\hat{L}_i \geq c) > 0$. The local bias is positive: $E[\mathbf{1}\{\hat{L}_i \geq c\} - 0] > 0$.

Bias Illustration
Optimal MSE Formulation

\[\omega_1, \omega_2, \ldots, \omega_i, \ldots, \omega_n \]

\[\hat{Z}_{i,1}, \ldots, \hat{Z}_{i,m} \]

Time

\(t \)

0 \quad \tau \quad T

\(n \) first stage samples
Optimal MSE Formulation

\[\omega_1, \omega_2, \ldots, \omega_i, \ldots, \omega_n \]

\[\hat{Z}_{i,1}, \hat{Z}_{i,2}, \ldots, \hat{Z}_{i,m} \]

\begin{itemize}
 \item \(n \) first stage samples
 \item \(m \) second stage samples
\end{itemize}

Broadie, Du and Moallemi: *Risk Estimation via Nested Sequential Simulation*
Optimal MSE Formulation

\[\omega_1 \quad \omega_2 \quad \ldots \quad \omega_i \quad \ldots \quad \omega_n \]

\[\hat{Z}_{i,1} \quad \hat{Z}_{i,2} \quad \ldots \]

\[0 \quad \tau \quad T \]

\(n \) first stage samples \quad \(m \) second stage samples

total work: \(k = mn \)
Optimal MSE Formulation

\[\omega_1, \omega_2, \ldots, \omega_i, \ldots, \omega_n \]

\[\hat{Z}_{i,1}, \hat{Z}_{i,2}, \ldots, \hat{Z}_{i,m} \]

Time t

0 τ T

n first stage samples m second stage samples

total work: $k = mn$

Optimal allocation problem:

\[\text{minimize }_{n,m} \text{ MSE} \]

subject to $nm = k$
Bias and Variance

\[\alpha = P(L \geq c) \quad \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]

\[\text{MSE} = \mathbb{E} \left[(\hat{\alpha} - \mathbb{E}\hat{\alpha})^2 \right] + \left(\mathbb{E}[\alpha - \hat{\alpha}] \right)^2 \]

\(\text{variance} + \text{bias}^2 \)

Under mild technical assumptions, as \(m, n \uparrow \infty \):

\[\text{variance} \rightarrow \alpha(1 - \alpha) n \] \[\text{bias} \rightarrow \gamma m \]

Optimal allocation:

\[\minimize_{n, m} \text{MSE} \quad \text{subject to} \quad nm = k \]

\[\begin{align*}
 n^* &= Ck^2/3 \\
 m^* &= 1/Ck^{1/3}
\end{align*} \]

\[\text{MSE} \propto k^{-2/3} \]

Gordy and Juneja (2006)

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation
\(\alpha = P(L \geq c) \)
\(\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \)

\[
MSE = E\left[(\hat{\alpha} - E\hat{\alpha})^2 \right] + \left(E[\alpha - \hat{\alpha}] \right)^2
\]

\[\text{variance} + \text{bias}^2\]

Under mild technical assumptions, as \(m, n \uparrow \infty \):

variance \(\rightarrow \frac{\alpha(1 - \alpha)}{n} \)
bias \(\rightarrow \frac{\gamma}{m} \)
Bias and Variance

\[\alpha = P(L \geq c) \quad \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]

\[\text{MSE} = E \left[(\hat{\alpha} - E\hat{\alpha})^2 \right] + \left(E[\alpha - \hat{\alpha}] \right)^2 \]

\[
\text{variance} \rightarrow \frac{\alpha(1 - \alpha)}{n} \quad \text{bias} \rightarrow \frac{\gamma}{m}
\]

Under mild technical assumptions, as \(m, n \uparrow \infty \):

\[
\text{variance} \rightarrow \frac{\alpha(1 - \alpha)}{n} \quad \text{bias} \rightarrow \frac{\gamma}{m}
\]

Optimal allocation:

\[
\text{minimize } \text{MSE} \quad \text{subject to } nm = k \quad \Rightarrow \quad \begin{cases}
 n^* = Ck^{2/3} \\
 m^* = \frac{1}{C}k^{1/3} \\
 \text{MSE} \propto k^{-2/3}
\end{cases}
\]

Gordy and Juneja (2006)
Optimal MSE Estimator

Optimal allocation: $n^* = Ck^{2/3}$, $m^* = \frac{1}{C}k^{1/3}$, $\text{MSE} \propto k^{-2/3}$
Optimal allocation: $n^* = Ck^{2/3}$, $m^* = \frac{1}{C} k^{1/3}$, $\text{MSE} \propto k^{-2/3}$

Observations:
- Similar expressions for VAR and CVAR, different constants
Optimal allocation: \(n^* = C k^{2/3}, \ m^* = \frac{1}{C} k^{1/3}, \ \text{MSE} \propto k^{-2/3} \)

Observations:

- Similar expressions for VAR and CVAR, different constants
- Not clear how to implement! Need to estimate the constant \(C \)
Optimal MSE Estimator

Optimal allocation: $n^* = Ck^{2/3}$, $m^* = \frac{1}{C}k^{1/3}$, $\text{MSE} \propto k^{-2/3}$

Observations:

- Similar expressions for VAR and CVAR, different constants
- Not clear how to implement! Need to estimate the constant C
- Can we do better?
Non-Uniform Sampling

Idea: use a non-uniform number of stage 2 samples

\[m_i = \text{number of samples at } \omega_i \]
Idea: use a non-uniform number of stage 2 samples

\[m_i = \text{number of samples at } \omega_i \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]
Non-Uniform Sampling

Idea: use a non-uniform number of stage 2 samples

\[m_i = \text{number of samples at } \omega_i \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]
Non-Uniform Sampling

Idea: use a non-uniform number of stage 2 samples

\[m_i = \text{number of samples at } \omega_i \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\hat{L}_i \geq c\}} \]

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation
Non-Uniform Sampling

Idea: use a non-uniform number of stage 2 samples

\[m_i = \text{number of samples at } \omega_i \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation
Non-Uniform Sampling

Idea: use a non-uniform number of stage 2 samples

\[m_i = \text{number of samples at } \omega_i \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]

Broadie, Du and Moallemi: *Risk Estimation via Nested Sequential Simulation*
Non-Uniform Sampling

Idea: use a non-uniform number of stage 2 samples

\[m_i = \text{number of samples at } \omega_i \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{\hat{L}_i \geq c\}} \]

\[\hat{Z}_{i,1}, \ldots, \hat{Z}_{i,m_i} \]

\[\omega_1, \omega_2, \ldots, \omega_i, \ldots, \omega_n \]

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation
Stage 2 Algorithm

\[\hat{L}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} \hat{Z}_{i,j} \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]

Idea:

- Sequentially add stage 2 samples

Broadie, Du and Moallemi: *Risk Estimation via Nested Sequential Simulation*
Stage 2 Algorithm

Idea:

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate $\hat{\alpha}$

Mathematical Formulas:

$$
\hat{L}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} \hat{Z}_{i,j}
$$

$$
\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\}
$$
Stage 2 Algorithm

Idea:

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate $\hat{\alpha}$

Mathematical Expressions:

$\hat{L}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} \hat{Z}_{i,j}$

$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\}$
Stage 2 Algorithm

Probability

Loss

\[\hat{L}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} \hat{Z}_{i,j} \]

\[\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\} \]

Idea:

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate \(\hat{\alpha} \)
Stage 2 Algorithm

\[
\hat{L}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} \hat{Z}_{i,j}
\]

\[
\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\}
\]

Idea:

- Sequentially add stage 2 samples
- Add the next sample where it will most affect the estimate \(\hat{\alpha} \)
- Use a normal approximation: given one more sample at \(\omega_i \),

\[
P(\text{estimate } \hat{\alpha} \text{ changes}) \approx \Phi \left(-\frac{m_i}{\sigma^2} | \hat{L}_i - c | \right)
\]
Non-Uniform Stage 2 Algorithm

- Simulate $\omega_1, \ldots, \omega_n$
- For each ℓ from 1 to k:
 - Pick $i^* \in \text{argmin}_i \frac{m_i}{\sigma^2} \left| \hat{L}_i - c \right|$, Add 1 sample at ω_{i^*}
- Estimate probability of loss
 $$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{L}_i \geq c\}$$
Key Result

Under suitable assumptions,

\[
\text{bias} \propto \frac{1}{\bar{m}^2} \quad \left(\text{vs. bias} \propto \frac{1}{m} \text{ under uniform sampling}\right)
\]
Under suitable assumptions,
\[
\text{bias } \propto \frac{1}{\bar{m}^2} \quad \text{ (vs. bias } \propto \frac{1}{m} \text{ under uniform sampling)}
\]

Proof Technique:
For a given \(\omega_i \), consider the sequential hypothesis testing problem:

- Observe IID samples \(\hat{Z}_{i,1}, \hat{Z}_{i,2}, \ldots \) with \(L(\omega_i) = \mathbb{E}[Z_{i,1}] \)
- Hypotheses:
 \[
 H_0(\omega_i) = \{ L(\omega_i) < c \}

 H_1(\omega_i) = \{ L(\omega_i) \geq c \}

 \]
- We wish to determine which hypothesis is true, with a minimal number of observations

Our non-uniform sampling algorithm is solving many sequential hypothesis testing problems simultaneously.
Rate of Convergence

- Uniform algorithm:

 \[
 \begin{aligned}
 &\text{minimize} & n, m \quad \text{MSE} \\
 \text{subject to} & \quad nm = k
 \end{aligned}
 \Rightarrow \begin{cases}
 n^* \propto k^{2/3} \\
 m^* \propto k^{1/3} \\
 \text{MSE} \propto k^{-2/3}
 \end{cases}
 \]

- Non-uniform algorithm:

 \[
 \begin{aligned}
 &\text{minimize} & n, \bar{m} \quad \text{MSE} \\
 \text{subject to} & \quad n\bar{m} = k
 \end{aligned}
 \Rightarrow \begin{cases}
 n^* \propto k^{4/5} \\
 \bar{m}^* \propto k^{1/5} \\
 \text{MSE} \propto k^{-4/5}
 \end{cases}
 \]
Gaussian Example

First stage: \(L(\omega_i) = \omega_i \), where \(\omega_i \sim N(0, \sigma_1^2) \)

Second stage: \(Z_{i,j} = \omega_i + \epsilon_{i,j} \), where \(\epsilon_{i,j} \sim N(0, \sigma_2^2) \)

Probability of loss: \(\Pr(L \geq c) = \Phi(-c/\sigma_1) \)
Number of Inner Stage Samples versus Loss

\[c = 2.326 \]

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation
Bias versus Number of Inner Stage Samples

\[\text{Bias} \propto k^{-2} \]

\[\text{Bias} \propto k^{-1} \]

Total number of inner stage samples \(k \)

- Sequential
- Uniform

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation
Numerical Results: Gaussian Example

\[\sigma_1 = 1, \quad \sigma_2 = 5, \quad \alpha = 0.1\%, \quad k = 4,000,000 \]

<table>
<thead>
<tr>
<th>Method</th>
<th>(n)</th>
<th>(\bar{m})</th>
<th>MSE</th>
<th>Rel MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = m = \sqrt{k})</td>
<td>2,000</td>
<td>2,000</td>
<td>(5.7 \cdot 10^{-7})</td>
<td>23</td>
</tr>
<tr>
<td>(n = k^{2/3}, \quad m = k^{1/3})</td>
<td>25,200</td>
<td>159</td>
<td>(1.2 \cdot 10^{-6})</td>
<td>48</td>
</tr>
<tr>
<td>uniform (optimal constant)</td>
<td>7,788</td>
<td>514</td>
<td>(2.5 \cdot 10^{-7})</td>
<td>10</td>
</tr>
<tr>
<td>adaptive</td>
<td>30,628</td>
<td>132</td>
<td>(3.6 \cdot 10^{-8})</td>
<td>1.5</td>
</tr>
<tr>
<td>optimal sequential</td>
<td>56,686</td>
<td>71</td>
<td>(2.5 \cdot 10^{-8})</td>
<td>1</td>
</tr>
</tbody>
</table>
Put Option Example

- **Stock price:** \(S_T(\omega) \triangleq S_0 e^{(\mu - \sigma^2/2)\tau + \sigma \sqrt{\tau} \omega} \)
- **\(L(\omega) = X_0 - \mathbb{E} \left[e^{-r(T-\tau)} \max (K - S_T(\omega, W), 0) \mid \omega \right] \)** where
 \[
 S_T(\omega, W) \triangleq S_\tau(\omega) e^{(r-\sigma^2/2)(T-\tau) + \sigma \sqrt{T-\tau} W}
 \]
 and
 \[
 \hat{Z}_{i,j} = X_0 - e^{-r(T-\tau)} \max \left(K - S_T(\omega_i, W_{i,j}), 0 \right),
 \]
- **Outer stage:** the real-world distribution (\(\mu \))
- **Inner stage:** risk-neutral distribution (\(r \))
Numerical Results: Put Option

\[S_0 = 100, \; K = 95, \; \sigma = 20\%, \; \tau = 1/52, \; T = 0.25 \]
\[\alpha = 0.1\%, \; k = 4,000,000 \]

<table>
<thead>
<tr>
<th>Method</th>
<th>(n)</th>
<th>(\tilde{m})</th>
<th>MSE</th>
<th>Rel MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = m = \sqrt{k})</td>
<td>2,000</td>
<td>2,000</td>
<td>(5.6 \cdot 10^{-7})</td>
<td>12</td>
</tr>
<tr>
<td>(n = k^{2/3}, ; m = k^{1/3})</td>
<td>25,200</td>
<td>159</td>
<td>(8.2 \cdot 10^{-6})</td>
<td>175</td>
</tr>
<tr>
<td>uniform (optimal constant)</td>
<td>2,570</td>
<td>1,556</td>
<td>(4.8 \cdot 10^{-7})</td>
<td>10</td>
</tr>
<tr>
<td>adaptive</td>
<td>14,384</td>
<td>284</td>
<td>(9.2 \cdot 10^{-8})</td>
<td>2</td>
</tr>
<tr>
<td>optimal sequential</td>
<td>26,508</td>
<td>151</td>
<td>(4.7 \cdot 10^{-8})</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary

- Nested simulation can provide a more realistic assessment of risk
- Reduced computational burden by
 - Non-uniform inner sampling to reduce bias
 - More outer sampling to reduce variance
- MSE reduced by factors from 4 to over 100