Tangent Lévy Models

Sergey Nadtochiy
(joint work with René Carmona)

Oxford-Man Institute of Quantitative Finance
University of Oxford

June 24, 2010

6th World Congress of the Bachelier Finance Society
Problem Formulation

Consider a *liquid market* consisting of an underlying price process $(S_t)_{t \geq 0}$ and prices of European Call options of all strikes K and maturities T:

$$ \left(\{C_t(T, K)\}_{T,K>0} \right)_{t \geq 0} $$

Want to describe a large class of *market models*: arbitrage-free stochastic models (say, given by SDE's) for time-evolution of the market, S and $\{C(T, K)\}_{T,K>0}$, such that

1. one can start the model from "almost" any *initial condition*, which is the set of currently observed market prices;
2. one can prescribe "almost" any *dynamics* for the model provided it doesn't contradict the no-arbitrage property.
Motivation

- Many Call Options have become liquid ⇒ need for financial models consistent with the observed option prices.

- Common *stochastic volatility* models (BS, Hull-White, Heston, etc.) are unable to reproduce the observed call prices of all strikes and maturities (fit the *implied volatility* surface).

 Local volatility models can fit option prices better.

- However, the above models have to be *recalibrated* to fit option prices at different times ⇒ they cannot be used to describe *time evolution* of call price surface.
Motivation

- Many Call Options have become liquid ⇒ need for financial models consistent with the observed option prices.

- Common stochastic volatility models (BS, Hull-White, Heston, etc.) are unable to reproduce the observed call prices of all strikes and maturities (fit the implied volatility surface). Local volatility models can fit option prices better.

- However, the above models have to be recalibrated to fit option prices at different times ⇒ they cannot be used to describe time evolution of call price surface.
Preceding Results

- E. Derman, I. Kani (1997): idea of ”dynamic local volatility” for continuum of options.

Direct approach

- First, need a reasonable notion of "price" in the model: let's agree that pricing is linear, that is, **prices of all contingent claims are given by discounted conditional expectations of their payoffs under some measure** (assume discount rate is one).

- It seems natural to model "observables" directly under pricing measure: choose a driving *Brownian motion* B and a *Poisson random measure* N (which represent the background stochastic factors) and prescribe dynamics of (infinite-dimensional) *process of option prices* through its *semimartingale characteristics*

$$dC_t = \alpha_t dt + \beta_t \cdot dB_t + \int \gamma_t(x) [N(dx, dt) - \nu(dx, dt)]$$
First, need a reasonable notion of ”price” in the model: let’s agree that pricing is linear, that is, prices of all contingent claims are given by discounted conditional expectations of their payoffs under some measure (assume discount rate is one).

It seems natural to model ”observables” directly under pricing measure: choose a driving Brownian motion B and a Poisson random measure N (which represent the background stochastic factors) and prescribe dynamics of (infinite-dimensional) process of option prices through its semimartingale characteristics

$$dC_t = \alpha_t dt + \beta_t \cdot dB_t + \int \gamma_t(x) [N(dx, dt) - \nu(dx, dt)]$$
Need to make sure these dynamics, indeed, produce option prices: each resulting $C_t(T, K)$ should coincide with corresponding conditional expectation.

\[F(\alpha_t, \beta_t, \gamma_t) = 0, \]

where F is known explicitly, and the above equation can be solved for some of the arguments.
Consistency conditions

Need to make sure these dynamics, indeed, produce option prices: each resulting $C_t(T, K)$ should coincide with corresponding conditional expectation.

\[\Downarrow \]

Consistency conditions on \{\(\alpha, \beta, \gamma\}\}

These conditions should be explicit! A perfect example is

\[F(\alpha_t, \beta_t, \gamma_t) = 0, \]

where \(F\) is known explicitly, and the above equation can be solved for some of the arguments.
Direct approach: difficulties

Turns out, the above direct approach (prescribing dC_t directly) results in way too complicated consistency conditions...

Why does it happen?

- Recall that the definition of call prices as expectations implies certain "static no-arbitrage properties": $C_t(T, K)$ has to be nonnegative, convex in K, converge to payoff, etc. These properties have to be preserved by the dynamics, which is reflected in the consistency conditions - hence the complexity.

- Static no-arbitrage conditions define a manifold in space of functions of two variables. Therefore, the "consistent" set of parameters can only be of the form

\[\alpha(C_t, t, \omega), \beta(C_t, t, \omega), \gamma(C_t, t, \omega) \]

- Need to analyze resulting SDE in an "infinite-dimensional manifold"...
Direct approach: difficulties

Turns out, the above *direct approach* (prescribing dC_t directly) results in way too complicated consistency conditions...

Why does it happen?

- Recall that the definition of call prices as expectations implies certain ”**static no-arbitrage properties**”: $C_t(T, K)$ has to be nonnegative, convex in K, converge to payoff, etc. These properties have to be preserved by the dynamics, which is reflected in the consistency conditions - hence the complexity.

- Static no-arbitrage conditions define a *manifold* in space of functions of two variables. Therefore, the ”consistent” set of parameters can only be of the form

 \[\alpha(C_t, t, \omega), \beta(C_t, t, \omega), \gamma(C_t, t, \omega) \]

- Need to analyze resulting SDE in an ”infinite-dimensional manifold”...
Direct approach: difficulties

Turns out, the above direct approach (prescribing dC_t directly) results in way too complicated consistency conditions...

Why does it happen?

- Recall that the definition of call prices as expectations implies certain "static no-arbitrage properties": $C_t(T,K)$ has to be nonnegative, convex in K, converge to payoff, etc. These properties have to be preserved by the dynamics, which is reflected in the consistency conditions - hence the complexity.

- Static no-arbitrage conditions define a manifold in space of functions of two variables. Therefore, the "consistent" set of parameters can only be of the form

$$\alpha(C_t, t, \omega), \beta(C_t, t, \omega), \gamma(C_t, t, \omega)$$

- Need to analyze resulting SDE in an "infinite-dimensional manifold"...
Let's *linearize* this manifold: find a one-to-one mapping of the set of feasible Call price surfaces (or its large enough subset) into some *open set in a linear space*. And consider dynamics in this linear space instead.

In general, **code-book** for a given set of derivatives is a one-to-one mapping defined on a family of their feasible price sets. Examples of code-books include:

- *Yield curve* for Treasury Bonds market.
- *Implied correlation* for CDO tranches.
- *Implied volatility* for Call options

Recall that we require certain properties from the code-book. In particular, implied vol will not work.
Code-books

Let's linearize this manifold: find a one-to-one mapping of the set of feasible Call price surfaces (or its large enough subset) into some open set in a linear space. And consider dynamics in this linear space instead.

In general, code-book for a given set of derivatives is a one-to-one mapping defined on a family of their feasible price sets.

Examples of code-books include:

- Yield curve for Treasury Bonds market.
- Implied correlation for CDO tranches.
- Implied volatility for Call options

Recall that we require certain properties from the code-book. In particular, implied vol will not work.
General methodology

Code-books

- Let's *linearize* this manifold: find a one-to-one mapping of the set of feasible Call price surfaces (or its large enough subset) into some *open set in a linear space*. And consider dynamics in this linear space instead.

- In general, **code-book** for a given set of derivatives is a one-to-one mapping defined on a family of their feasible price sets.

- Examples of code-books include:
 - *Yield curve* for Treasury Bonds market.
 - *Implied correlation* for CDO tranches.
 - *Implied volatility* for Call options

- Recall that we require certain properties from the code-book. In particular, implied vol will not work.
Local Volatility as a code-book

- **B. Dupire (1994)** deduced that, if

 \[d\tilde{S}_T = \tilde{S}_T a(T, \tilde{S}_T) dW_T, \quad \tilde{S}_0 = S_t, \]

 then

 \[a^2(T, K) := \frac{2}{K^2} \frac{\partial}{\partial T} C(T, K) \frac{\partial^2}{\partial K^2} C(T, K) \]

 (1)

 We can use (2) to recover Local Volatility "a" from market prices of Call options, and

 we can use (1) to generate a (feasible!) Call price surface from a given Local Vol (and current level of underlying \(S_t \)).

 Only some regularity and nonnegativity is required from surface \(a(., .) \)!
Local Volatility as a code-book

- B. Dupire (1994) deduced that, if

\[d\tilde{S}_T = \tilde{S}_T a(T, \tilde{S}_T) dW_T, \quad \tilde{S}_0 = S_t, \]

(1)

then

\[a^2(T, K) := 2 \frac{\partial}{\partial T} C(T, K) \frac{K^2}{K^2} \frac{\partial^2}{\partial K^2} C(T, K) \]

(2)

- We can use (2) to recover Local Volatility "a" from market prices of Call options, and
- we can use (1) to generate a (feasible!) Call price surface from a given Local Vol (and current level of underlying \(S_t \)).
- Only some regularity and nonnegativity is required from surface \(a(.,.) \)!
Other code-books

- When can we use Local Vol as a (static) code-book for Call prices?

 I. Gyongy: it is possible if underlying follows regular enough Ito process.

- Can we develop a general approach to construction of code-books?

- Local Volatility code-book can be interpreted as follows: we choose a model from the class of diffusion models, such that it produces the correct (market-given) call prices, and the corresponding Local Vol gives the code-book value.
Other code-books

- When can we use Local Vol as a (static) code-book for Call prices?

 \textit{I. Gyongy:} it is possible if underlying follows regular enough Ito process.

- Can we develop a general approach to construction of code-books?

- Local Volatility code-book can be interpreted as follows: we choose a model from the \textit{class of diffusion models}, such that it produces the correct (market-given) call prices, and the corresponding Local Vol gives the code-book value.
Other code-books

- When can we use Local Vol as a (static) code-book for Call prices?

 I. Gyongy: it is possible if underlying follows regular enough Itô process.

- Can we develop a general approach to construction of code-books?

- Local Volatility code-book can be interpreted as follows: we choose a model from the class of diffusion models, such that it produces the correct (market-given) call prices, and the corresponding Local Vol gives the code-book value.
Consider a class of ”simple” financial models for the underlying, parameterized by $\theta \in \Theta$

$$\mathcal{M} = \{ M(\theta) \}_{\theta \in \Theta}$$

For example, \mathcal{M} can be a class of diffusion models parameterized by Local Vol and initial value: $\theta = \left(a(.,.), \tilde{S}_0 \right)$.

Each model $M(\theta)$ produces Call prices $C^\theta(T, K)$. If the mapping $\theta \mapsto C^\theta$ is invertible, we obtain a code-book associated with \mathcal{M}.

Of course, Θ needs to be an open set in a linear space - but usually this can be achieved.

We have rediscovered calibration, but with a proper meaning now!
Tangent models

- Construct market model by prescribing time-evolution of θ_t, and obtain C_t as an inverse of the code-book transform.

- Recall that "feasibility" of call prices means there is a "true" (but unknown) martingale model for underlying process S in the background.

- If at time t there exists $\theta_t \in \Theta$, such that C^{θ_t} coincides with "true" Call price surface C_t, we say that the "true" model admits a tangent model from class \mathcal{M} at time t.

- In the above notation, process $(\theta_t)_{t \geq 0}$ is consistent with a "true" model for S if $M(\theta_t)$ is tangent to this "true" model at any time t. Note the analogy with tangent vector field in differential geometry.
Tangent models

- **Construct market model by prescribing time-evolution of** θ_t, and obtain C_t as an inverse of the code-book transform.

- Recall that ”feasibility” of call prices means there is a ”true” (but unknown) martingale model for underlying process S in the background.

- If at time t there exists $\theta_t \in \Theta$, such that C^{θ_t} coincides with ”true” Call price surface C_t, we say that the ”true” model **admits a tangent model from class** \mathcal{M} at time t.

- In the above notation, process $(\theta_t)_{t \geq 0}$ is **consistent** with a ”true” model for S if $M(\theta_t)$ is tangent to this ”true” model at any time t.
 Note the analogy with **tangent vector field** in differential geometry.
Tangent models

- Construct market model by prescribing time-evolution of θ_t, and obtain C_t as an inverse of the code-book transform.

- Recall that "feasibility" of call prices means there is a "true" (but unknown) martingale model for underlying process S in the background.

- If at time t there exists $\theta_t \in \Theta$, such that C^{θ_t} coincides with "true" Call price surface C_t, we say that the "true" model admits a tangent model from class \mathcal{M} at time t.

- In the above notation, process $(\theta_t)_{t \geq 0}$ is consistent with a "true" model for S if $M(\theta_t)$ is tangent to this "true" model at any time t.

Note the analogy with tangent vector field in differential geometry.
Consider a model $M(\kappa, s)$, given by

- Exponential of a **pure jump additive (time-inhomogeneous Lévy)** process

$$
\tilde{S}_T = s + \int_t^T \int_\mathbb{R} \tilde{S}_u (e^x - 1) \left[N(dx, du) - \nu(dx, du) \right],
$$

where $N(dx, du)$ is a **Poisson random measure** associated with jumps of $\log(\tilde{S})$, given by its compensator

$$
\nu(dx, du) = \kappa(u, x) dx du
$$

- equipped with its natural filtration.

Thus, we obtain the set of ”simple” models $\mathcal{M} = \{M(\kappa, s)\}$, with κ changing in a space of (time-dependent) Lévy densities.
Lévy density as a code-book

- Notice that $C^{\kappa,s}(T, e^x)$ satisfies a PIDE analogous to the Dupire’s equation.

- Introduce $\Delta^{\kappa,s}(T, x) = -\partial_x C^{\kappa,s}(T, e^x)$, and deduce an initial-value problem for $\Delta^{\kappa,s}$ from the PIDE for call prices.

- Take Fourier transform in "$x" to obtain $\hat{\Delta}^{\kappa,s}(T, \xi)$. The initial-value problem in Fourier domain can be solved in closed form, which gives us an explicit expression for $\hat{\Delta}^{\kappa,s}$ in terms of κ and s. This expression can be inverted to obtain κ from $\hat{\Delta}^{\kappa,s}$ and s.

- Thus, given $s (= S_t)$, we have a bijection: $C^{\kappa,s} \leftrightarrow \Delta^{\kappa,s} \leftrightarrow \hat{\Delta}^{\kappa,s} \leftrightarrow \kappa$.
Tangent Lévy Models

We say that \((S_t)_{t \in [0, \bar{T}]}\) and \((\kappa_t)_{t \in [0, \bar{T}]}\) form a tangent Lévy model if the following holds under the pricing measure:

1. \(C^{\kappa_t, S_t} = C_t\) at each \(t\).
2. Process \(S\) is a martingale, and \(\kappa_t \geq 0\).
3. \(S\) and \(\kappa\) evolve according to

\[
\begin{align*}
S_t &= S_0 + \int_0^t \int_\mathbb{R} S_u - (\exp(\gamma(\omega, u, x)) - 1)(N(dx, du) - \rho(x)dxdu), \\
\kappa_t &= \kappa_0 + \int_0^t \alpha_u du + \sum_{n=1}^m \int_0^t \beta_u^n dB_u^n,
\end{align*}
\]

where

- \(B = (B^1, \ldots, B^m)\) is a \(m\)-dimensional Brownian motion,
- \(N\) is a Poisson random measure with compensator \(\rho(x)dxdu\),
- \(\gamma(\omega, t, x)\) is a predictable random function,
- processes \(\alpha\) and \(\{\beta^n\}_{n=1}^m\) take values in a corresponding function space.
Consistency conditions

Given that 2 and 3 hold, 1 is equivalent to the following pair of conditions:

1. **Drift restriction:**

\[
\alpha_t(T, x) = Q(\beta_t; T, x) := \\
- e^{-x} \sum_{n=1}^{m} \int_{\mathbb{R}} \int_{t}^{T} \partial_{y}^{2} \psi_{\beta_t}^{n}(u; y) \, du \left[\psi_{\beta_t}^{n}(T; x - y) \right] \\
- (1 - y \partial_{x}) \psi_{\beta_t}^{n}(T; x) \right] - \int_{t}^{T} \psi_{\beta_t}^{n}(u; y) \, du \psi_{\beta_t}^{n}(T; x - y) \, dy
\]

2. **Compensator specification:**

\[
\kappa_t(t, x) \, dx \, dt = (\rho(x) \, dx \, dt) \circ \gamma^{-1}(t, .)
\]

where \(\psi_{\beta_t}^{n}(T, x) = - e^{x} \int_{x}^{\text{sign}(x)\infty} \beta_t^{n}(T, y) \, dy \)
Existence of Tangent Lévy Models

Specifications

- Choose \(\rho(x) := e^{-\lambda|x| (|x|^{-1-2\delta} \vee 1)} \), with some fixed \(\lambda > 1 \) and \(\delta \in (0, 1) \).

- Consider \(\kappa \) of the form: \(\kappa(T, x) = \rho(x) \tilde{\kappa}(T, x) \), where \(\tilde{\kappa} \) is an element of the space of continuous functions, equipped with usual "sup" norm.

- Then \(\tilde{\alpha}_t = \alpha_t / \rho \) and \(\tilde{\beta}_t = \beta_t / \rho \), and we have

\[
d\tilde{\kappa}_t = \tilde{\alpha}_t \, dt + \tilde{\beta}_t \cdot dB_t,
\]

stopped at \(\tau_0 = \inf \left\{ t \geq 0 : \inf_{T \in [t, \bar{T}], x \in \mathbb{R}} \tilde{\kappa}_t(T, x) \leq 0 \right\} \).

- Then, \(\kappa_t := \rho \tilde{\kappa}_{t \wedge \tau_0} \) is nonnegative and changes on an open set in a linear space!

- There exists a (tractable) specification \(\gamma(t, x) := \Gamma(\tilde{\kappa}_t; x) \) which fulfills the "compensator specification" automatically.
Existence of Tangent Lévy Models

Specifications

Choose \(\rho(x) := e^{-\lambda|x|} (|x|^{-1-2\delta} \vee 1) \), with some fixed \(\lambda > 1 \) and \(\delta \in (0, 1) \).

Consider \(\kappa \) of the form: \(\kappa(T, x) = \rho(x)\tilde{\kappa}(T, x) \), where \(\tilde{\kappa} \) is an element of the space of continuous functions, equipped with usual "sup" norm.

Then \(\tilde{\alpha}_t = \alpha_t / \rho \) and \(\tilde{\beta}_t = \beta_t / \rho \), and we have

\[
d\tilde{\kappa}_t = \tilde{\alpha}_t \, dt + \tilde{\beta}_t \cdot dB_t,
\]

stopped at \(\tau_0 = \inf \left\{ t \geq 0 : \inf_{T \in [t, \bar{T}], x \in \mathbb{R}} \tilde{\kappa}_t(T, x) \leq 0 \right\} \).

Then, \(\kappa_t := \rho\tilde{\kappa}_{t \wedge \tau_0} \) is nonnegative and changes on an open set in a linear space!

There exists a (tractable) specification \(\gamma(t, x) := \Gamma(\tilde{\kappa}_t; x) \) which fulfills the "compensator specification" automatically.
Specifications

- Choose $\rho(x) := e^{-\lambda |x|} \left(|x|^{-1-2\delta} \lor 1 \right)$, with some fixed $\lambda > 1$ and $\delta \in (0, 1)$.

- Consider κ of the form: $\kappa(T, x) = \rho(x)\tilde{\kappa}(T, x)$, where $\tilde{\kappa}$ is an element of the space of continuous functions, equipped with usual "sup" norm.

- Then $\tilde{\alpha}_t = \alpha_t / \rho$ and $\tilde{\beta}_t = \beta_t / \rho$, and we have

$$d\tilde{\kappa}_t = \tilde{\alpha}_t \, dt + \tilde{\beta}_t \cdot dB_t,$$

stopped at $\tau_0 = \inf \left\{ t \geq 0 : \inf_{T \in [t, \bar{T}], x \in \mathbb{R}} \tilde{\kappa}_t(T, x) \leq 0 \right\}$.

- Then, $\kappa_t := \rho\tilde{\kappa}_{t \wedge \tau_0}$ is nonnegative and changes on an open set in a linear space!

- There exists a (tractable) specification $\gamma(t, x) := \Gamma(\tilde{\kappa}_t; x)$ which fulfills the "compensator specification" automatically.
Local existence

\[
\begin{cases}
S_t = S_0 + \int_0^t \int_{\mathbb{R}} S_u - (\exp(\Gamma(\tilde{\kappa}_u; x)) - 1)(N(dx, du) - \rho(x)dxdu) \\
\tilde{\kappa}_t = \tilde{\kappa}_0 + \int_0^{t \wedge \tau_0} Q(\rho \tilde{\beta}_u) du + \sum_{n=1}^m \int_0^{t \wedge \tau_0} \tilde{\beta}_n u dB_u^n
\end{cases}
\]

(3)

For any given Poisson random measure N, with compensator $\rho(x)dxdt$, any Brownian motion $B = (B^1, \ldots, B^m)$ independent of N, and any progressively measurable square integrable stochastic processes $\{\tilde{\beta}_n\}_{n=1}^m$ (with values in corresponding function space) independent of N, there exists a unique pair $(S_t, \tilde{\kappa}_t)_{t \in [0, \bar{T}]}$ of processes satisfying (3). **The pair $(S_t, \rho \tilde{\kappa}_t \wedge \tau_0)_{t \in [0, \bar{T}]}$ forms a tangent Lévy model.**
Example of a tangent Lévy model

- Choose $m = 1$, and $\tilde{\beta}_t(T, x) = \xi_t C(x)$, where $C(x)$ is some fixed function (satisfying some technical conditions), and

$$\xi_t = \xi(\tilde{\kappa}_t) = \frac{\sigma}{\epsilon} \left(\inf_{T \in [t, \bar{T}], x \in \mathbb{R}} \tilde{\kappa}_t(T, x) \wedge \epsilon \right)$$

- Then ”drift restriction” simplifies to

$$Q(\rho \tilde{\beta}_t; T, x) = -\frac{e^{-x}}{\rho(x)} \int_{\mathbb{R}} \int_t^T \partial_y \psi^{\rho \tilde{\beta}_t} (u, y) \, du \partial_x \psi^{\rho \tilde{\beta}_t} (T, x - y)$$

$$- \int_t^T \psi^{\rho \tilde{\beta}_t} (u, y) \, du \psi^{\rho \tilde{\beta}_t} (T, x - y) \, dy = \xi^2(\tilde{\kappa}_t)(T - t \wedge T) A(x)$$

and

$$\tilde{\kappa}_t(T, x) = \tilde{\kappa}_0(T, x) + (T - t \wedge T) A(x) \int_0^t \xi^2(\tilde{\kappa}_u) \, du + C(x) \int_0^t \xi^2(\tilde{\kappa}_u) \, dB_u$$
Conclusions

- We have described a general approach to constructing market models for Call options: find the right code-book by choosing a space of tangent models, prescribe time-evolution of the code-book value via its semimartingale characteristics and analyze consistency of resulting dynamics.

- This approach was illustrated by "Tangent Lévy Models" - a large class of market models, explicitly constructed and parameterized by $\tilde{\beta}$!

- Proposed market models allow one to start with observed call price surface and model explicitly its future values under the risk-neutral measure. For example, they provide a flexible framework for simulating the (arbitrage-free) evolution of implied volatility surface.
Further extensions

- One needs to consider $\tilde{\beta}_t = \tilde{\beta}(\tilde{\kappa}_t)$ and solve the resulting SDE for $\tilde{\kappa}_t$, as shown in the example, in order to ensure that $\tilde{\kappa}$ stays positive.

- There exists an extension of the Lévy-based code-book, the pair ("Lévy density", "instantaneous volatility"), which allows the "true" underlying to have a non-trivial continuous martingale component.
Estimated coefficients C^1 and C^2, as functions of $x = \log(K/S)$.