On the non-linear relationship between default intensity and leverage

Mathieu Boudreault, Geneviève Gauthier

UQAM

June 26th, 2010
Credit risk: potential losses due to
 - Default;
 - Downgrade;

Recent bankruptcies and technical defaults:
 - General Motors (2009), Lehman Brothers (2008);
 - AIG (2008), Fannie Mae (2008) and Freddie Mac (2008);

Need tools/models to estimate the distribution of losses due to credit risk;
Credit risk comes from two sources:
- Moment of default;
- Amount of losses given default;

Literature has large focus on modeling moment of default:
- Structural, reduced-form, hybrid models;

Altman et al. (2004) among others: recovery rate is inversely proportional to default probability;

Recovery rate modeling has been overlooked until very recently
- Bakshi, Madan & Zhang (2006b), Pan & Singleton (2008), Das & Hanouna (2009);
Key contributions of the paper

- **Hybrid model** where default intensity is a non-linear transformation of leverage;
 - Bakshi, Madan, Zhang (2006a) is a linear function of leverage;

- Observed leverage at default determines **recovery rate** upon default;
 - Assets available after liquidation are used to compute recovery rate;
 - Gives rise to a term structure of recovery rate;
 - Bakshi, Madan, Zhang (2006b) and Das & Hanouna (2009) use arbitrary functions of default intensity to build recovery rate;
 - Pan & Singleton (2008) discuss the identification problem between recovery rate and default intensity;
 - Solved by the use of recovery of face value and the recovery rate model proposed;
Key contributions of the paper

- Estimation of parameters account for *trading noise*;
 - Maximum likelihood approach using term structure of CDS prices;
 - Consistent with Duan & Fulop (2009);
- **Empirical study** on non-linearity of default intensity with respect to leverage;
 - Estimation performed on a firm-by-firm basis;
 - Investment-grade companies vs non-investment grade;
 - Stability over time, impact of credit crisis;
Outline

1. Introduction;
2. Hybrid model;
 1. Moment of default;
 2. Amount of losses;
3. Estimation;
4. Empirical study;
5. Conclusion;
Moment of default

- Hybrid models: combine elements of structural and reduced-form credit risk models;
 - Incomplete information models: Duffie & Lando (2001), Çetin, Jarrow, Protter & Yildirim (2004), Giesecke (2004);
 - Other important contributions: Bakshi, Madan & Zhang (2006a), Madan & Unal (2000);

- **Structural component**: define a model for the evolution of assets of the company \(\{A_t, t \geq 0\} \) and its liabilities (or of a default barrier) \(\{L_t, t \geq 0\} \);
- Debt ratio or leverage \(\{X_t, t \geq 0\} \): \(X_t = \frac{L_t}{A_t} \);
- **Reduced-form component**: default occurs at the first jump of a Cox process;
- Default intensity \(\{H_t, t \geq 0\} \): \(H_t = h(X_t) \);
Moment of default

- Transformation of leverage h:
 - Increasing (when leverage increases, default intensity should increase as well);
 - Convex (a small change in leverage has more impact on default intensity when the latter is large);
 - 2 illustrations

- Assumption:

 $$ h(x) \equiv \frac{\alpha}{\theta} \left(\frac{x}{\theta} \right)^{\alpha-1}, \alpha > 0, \theta > 0. $$

- Interpretation:
 - α determines the sensitivity of default with respect to debt ratio;
 - θ determines a critical level of leverage after which default and liquidation seriously accelerate;
Default probability for various h functions when X_t is constant;

Examples: $h(x) = c$ (constant), $h(x) = cx^2$, $h(x) = cx^{10}$.
Illustration # 2

- Joint evolution of debt ratio and default intensity
- **Examples**: $h(x) = cx^2$, $h(x) = cx^{10}$
Amount of loss upon default

- Debt ratio at the moment of default (τ) determines amount of loss;
- Assets available to debtholders: subtract legal and liquidation fees (fraction κ of assets);
- Proposed recovery rate model:
 \[
 R_\tau = \min \left(\frac{A_\tau (1 - \kappa)}{L_\tau}; 1 \right).
 \]
- Recovery rate model and recovery of face value assumption: no identification problem;
- Historical facts about recovery rates:
 - Between 40% and 70%;
 - Inversely proportional to default probability;
 - Decrease during recessions;
Unobservability of market values

- Market value of assets and liabilities: not observable (Jarrow & Turnbull (2000), Jarrow & Protter (2004))

- Solutions:
 - Change model: incomplete information models;
 - Estimation approach: MLE (Duan (1994))
 - Using equity or other derivatives price, find the corresponding asset value;

- Equity (or other derivatives’ prices) are noisy;

 - More precise estimates of the asset volatility;
State-space representation

- Unobserved variable (state equation): evolution of market debt ratio \(\{X_t, t \geq 0\} \);
- Observed variables (measurement equation): prices of derivatives, equity, bonds, etc. given by \(\{Y_t^{(i)}, t \geq 0\}, i = 1, 2, 3, \ldots, N \)
 - Can integrate \(N \) sources of information: equity, term structure of CDS, bonds, etc.
- All prices depend on the evolution of market debt ratio using the function \(g^{(i)}(X_t) \);
- Idea: observed prices are noisy non-linear transformations of market debt ratio i.e.
 \[Y_t^{(i)} = g^{(i)}(X_t) e^{\nu_k} \]
 where \(\nu_k \) is a Gaussian noise.
- We use the unscented Kalman filter (UKF) since \(g^{(i)} \) is non-linear;
 - The standard Kalman filter would be inappropriate;
Purposes

- Understand relationship between default intensity and leverage for investment-grade and non-investment grade companies;
- Stationarity of this relationship with respect to the occurrence of the 2007-2010 credit crisis;
- Behavior of the recovery rate given default
 - Term structure of recovery rate;
 - Impact of 2007-2010 credit crisis;
Data and methodology

- Capital structure of the companies: debt ratio is a geometric Brownian motion with drift \(\mu^P_X (\mu^Q_X \text{ for pricing purposes}) \) and diffusion \(\sigma_X \);
 - Approach presented in this paper is not limited by this assumption;
- 225 companies of the CDX NA IG and CDX NA HY indices;
- CDS prices: DATASTREAM
 - Term structure of prices: 1-5 years used, 1-10 years available;
 - Observed each month from January 2004 to May 2008;
 - Approximately 50,000 observations;
- Interest rates: FRED
- Credit rating: S&P
- Parameters are estimated for each company using time series of monthly CDS prices;
Relationship with credit ratings

- Market debt ratio mean return μ_X:
 - 1.85% (IG) vs 3.98% (non-IG): non significant

- Market debt ratio volatility σ_X:
 - 10.31% (IG) vs 13.02% (non-IG): significant

- Convexity of the transformation α:
 - 12.01 (IG) vs 16.7 (non-IG): significant

- Critical level of debt ratio θ:
 - 1.59 (IG) vs 1.42 (non-IG): significant

- Liquidation and legal costs κ:
 - 51.74% (IG) vs 45.82% (non-IG): non significant

- Initial market debt ratio \hat{X}_0:
 - 64.69% (IG) vs 76.55% (non-IG): significant
Effect of credit crisis

- Shown for investment-grade companies;
- For parameters not shown, effect of credit crisis is small;

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_X</td>
<td>-0.16%</td>
<td>2.59%</td>
</tr>
<tr>
<td>σ_X</td>
<td>5.97%</td>
<td>11.54%</td>
</tr>
<tr>
<td>α</td>
<td>16.3951</td>
<td>11.4695</td>
</tr>
<tr>
<td>θ</td>
<td>1.3862</td>
<td>1.6814</td>
</tr>
</tbody>
</table>
Term structure of recovery rate

- Time period: 2004-2006
- Values consistent with literature;
Term structure of recovery rate

- Time period: 2006-2008
- Important drop: approximately 15%
Conclusion

- Hybrid credit risk model;
 - Non-linear transformation of leverage;
 - Recovery rate inversely proportional to default probability;

- Empirical study;
 - Investment-grade companies have lower convexity: default has a greater amount of surprise;
 - Investment-grade companies have higher default threshold: greater leverage is tolerated;
 - Effect of credit crisis is to increase share of surprises in default;
 - Term structure of recovery rate: increasing and decreasing as with credit spread curves;
 - Decreased importantly in the second part of the sample;