Own-Company Stockholding and Work Effort Preferences of an Unconstrained Executive

Sascha Desmettre

6th World Congress of the Bachelier Finance Society
Toronto, June 22-26, 2010

Fraunhofer ITWM

(\textit{CM})^2

Center for Mathematical + Computational Modelling

\(^1\) Joint Work with Alexander Szimayer and John Gould.
1 Introduction

2 Set-Up
 - Investment Opportunities and Work Effort Choice
 - Restating the Set-Up

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solutions

4 Implications of Results
 - Log-Utility

5 Outlook
Introduction

2 Set-Up
 • Investment Opportunities and Work Effort Choice
 • Restating the Set-Up

3 Optimal Strategies
 • HJB Equation
 • Closed-Form Solutions

4 Implications of Results
 • Log-Utility

5 Outlook
Motivation

- Share-based payments frequently used and controversial; (public interest: Are executives overpaid?)

- Finance and economics theory: principal-agent-problem; (principal = share holder, agent = executive)

- How do share-based payments (e.g.: stock options) increase the executive’s incentive/effort? (“constrained executive”: risk taking in own-company manipulated)

- “Base case” as first step: analyze “unconstrained executive” without any constraints on his compensation.
 ⇒ Insight how the agent can be controlled by the principal.
Motivation

- Share-based payments frequently used and controversial; (public interest: Are executives overpaid?)
- Finance and economics theory: principal-agent-problem; (principal = share holder, agent = executive)
- How do share-based payments (e.g.: stock options) increase the executive’s incentive/effort? ("constrained executive": risk taking in own-company manipulated)
- "Base case" as first step: analyze "unconstrained executive" without any constraints on his compensation. ⇒ Insight how the agent can be controlled by the principal.
Motivation

- Share-based payments frequently used and controversial; (public interest: Are executives overpaid?)

- Finance and economics theory: principal-agent-problem; (principal = share holder, agent = executive)

- How do share-based payments (e.g.: stock options) increase the executive’s incentive/effort? ("constrained executive": risk taking in own-company manipulated)

- “Base case” as first step: analyze “unconstrained executive” without any constraints on his compensation.
 ⇒ Insight how the agent can be controlled by the principal.
Utility-maximizing Executive

- Endowed with an initial wealth v_0, which is invested in the money market account, a diversified market portfolio, and own company shares
- Value of his own company is influenced via work effort:
 - Gain in utility from the increased value of his direct shareholding
 - Loss in utility for his work effort \rightarrow disutility term

Characterization of the Executive

- Risk aversion parameter γ
- Work effectiveness parameters:
 - Inverse work productivity κ
 - Disutility stress α
Utility-maximizing Executive

- Endowed with an initial wealth v_0, which is invested in the money market account, a diversified market portfolio, and own company shares
- Value of his own company is influenced via work effort:
 - Gain in utility from the increased value of his direct shareholding
 - Loss in utility for his work effort \rightarrow disutility term

Characterization of the Executive

- Risk aversion parameter γ
- Work effectiveness parameters:
 - Inverse work productivity κ
 - Disutility stress α
1 Introduction

2 Set-Up
 - Investment Opportunities and Work Effort Choice
 - Restating the Set-Up

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solutions

4 Implications of Results
 - Log-Utility

5 Outlook
Money Market Account:

\[dB_t = r B_t \, dt, \quad B_0 = 1, \quad (1) \]

Market Portfolio:

\[dP_t = P_t (\mu^P \, dt + \sigma^P \, dW_t^P), \quad P_0 \in \mathbb{R}^+, \quad (2) \]

Company’s share price process is a controlled diffusion with SDE

\[dS_t^{\mu,\sigma} = S_t^{\mu,\sigma} \left(\mu_t \, dt + \sigma_t \, dW_t + \beta \left[\frac{dP_t}{P_t} - r \, dt \right] \right), \quad S_0 \in \mathbb{R}^+, \quad (3) \]

where the drift \(\mu_t \) and the volatility \(\sigma_t \) are controlled by the executive.

Individual influences the own company’s share price.

\[\overset{\Delta}{=} \text{Gain in utility from the increased value of his direct shareholding.} \]

Remark

\(W^P \) and \(W \) are two independent standard Brownian motions, but the instantaneous correlation between \(S_t^{\mu,\sigma} \) and \(P_t \) is

\[\rho_t = \frac{\beta \sigma^P}{\sqrt{\sigma^2 + (\beta \sigma^P)}}. \]
Money Market Account:

\[dB_t = r B_t \, dt , \quad B_0 = 1 , \quad (1) \]

Market Portfolio:

\[dP_t = P_t (\mu^P \, dt + \sigma^P \, dW^P_t) , \quad P_0 \in \mathbb{R}^+ , \quad (2) \]

Company’s share price process is a controlled diffusion with SDE

\[dS_{t}^{\mu,\sigma} = S_t^{\mu,\sigma} \left(\mu_t \, dt + \sigma_t \, dW_t + \beta \left[\frac{dP_t}{P_t} - r \, dt \right] \right) , \quad S_0 \in \mathbb{R}^+ , \quad (3) \]

where the drift \(\mu_t \) and the volatility \(\sigma_t \) are controlled by the executive.

Individual influences the own company’s share price.

\(\triangleq \) Gain in utility from the increased value of his direct shareholding.

Remark

\(W^P \) and \(W \) are two independent standard Brownian motions, but the instantaneous correlation between \(S_t^{\mu,\sigma} \) and \(P_t \) is \(\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma^P)} \).
Money Market Account:

\[dB_t = r B_t \, dt, \quad B_0 = 1, \quad (1) \]

Market Portfolio:

\[dP_t = P_t (\mu^P \, dt + \sigma^P \, dW^P_t), \quad P_0 \in \mathbb{R}^+, \quad (2) \]

Company's share price process is a controlled diffusion with SDE

\[dS^\mu,\sigma_t = S^\mu,\sigma_t \left(\mu_t \, dt + \sigma_t \, dW_t + \beta \left[\frac{dP_t}{P_t} - r \, dt \right] \right), \quad S_0 \in \mathbb{R}^+, \quad (3) \]

where the drift \(\mu_t \) and the volatility \(\sigma_t \) are controlled by the executive.

Individual influences the own company's share price.

\(\triangleq \text{Gain in utility from the increased value of his direct shareholding.} \)

Remark

\(W^P \) and \(W \) are two independent standard Brownian motions, but the instantaneous correlation between \(S^\mu,\sigma_t \) and \(P_t \) is \(\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma^P)} \).
Wealth Equation

For investment strategy $\pi = (\pi^P, \pi^S)$ and initial wealth $V_0 > 0$:

$$dV_t^\pi = V_t^\pi \left((1 - \pi_t^P - \pi_t^S) dB_t/B_t + \pi_t^P dP_t/P_t + \pi_t^S dS_t^{\mu, \sigma}/S_t^{\mu, \sigma} \right).$$ (4)

Work Effort Choice and Disutility

Instantaneous disutility of work effort is represented by a Markovian disutility rate $c(t, v, \mu_t, \sigma_t)$ for control strategy (μ_t, σ_t).

⇒ The optimal investment and control decision is the solution of

$$\Phi(t, v) = \sup_{(\pi, \mu, \sigma) \in A(t, v)} \mathbb{E}^{t, v} \left[U(V_T^\pi) - \int_t^T c_u(\mu_u, \sigma_u) \, du \right], \quad (t, v) \in [0, T] \times \mathbb{R}^+. $$ (5)
Wealth Equation

For investment strategy \(\pi = (\pi^P, \pi^S) \) and initial wealth \(V_0 > 0 \):

\[
dV^\pi_t = V^\pi_t \left((1 - \pi^P_t - \pi^S_t) dB_t/B_t + \pi^P_t dP_t/P_t + \pi^S_t dS^\mu,\sigma_t/S^\mu,\sigma_t \right).
\] (4)

Work Effort Choice and Disutility

Instantaneous disutility of work effort is represented by a Markovian disutility rate \(c(t, \nu, \mu_t, \sigma_t) \) for control strategy \((\mu_t, \sigma_t) \).

\(\Rightarrow \) The \textit{optimal investment and control decision} is the solution of

\[
\Phi(t, \nu) = \sup_{(\pi, \mu, \sigma) \in A(t, \nu)} E^{t, \nu} \left[U(V^\pi_T) - \int_t^T c_u(\mu_u, \sigma_u) \, du \right], \quad (t, \nu) \in [0, T] \times \mathbb{R}^+.
\] (5)
Define **Sharpe ratio** as \(\lambda = \frac{\mu - r}{\sigma} \).

Minimize disutility rate for this fixed Sharpe ratio \(\lambda \) and obtain \(c^*(t, v, \lambda) \).

Replace \(c(t, v, \mu, \sigma) \) by \(c^*(t, v, \lambda) \).

Restate the maximization problem (5) over the controls \(\pi \) and \(\lambda \).

Lemma

Under sufficient assumptions on \(c(t, v, \mu, \sigma) \), the minimization problem

\[
\min_{\{\sigma > 0: \mu = r + \lambda \sigma\}} c(t, v, \mu, \sigma), \quad \text{for } (t, v, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+,
\]

admits a unique solution \(\sigma^(t, v, \lambda) \).*
Define **Sharpe ratio** as \(\lambda = \frac{\mu - r}{\sigma} \).

Minimize disutility rate for this fixed Sharpe ratio \(\lambda \) and obtain \(c^*(t, \nu, \lambda) \).

Replace \(c(t, \nu, \mu, \sigma) \) by \(c^*(t, \nu, \lambda) \).

Restate the maximization problem (5) over the controls \(\pi \) and \(\lambda \).

Lemma

Under sufficient assumptions on \(c(t, \nu, \mu, \sigma) \), the minimization problem

\[
\min_{\{\sigma > 0: \mu = r + \lambda \sigma\}} c(t, \nu, \mu, \sigma), \quad \text{for} \; (t, \nu, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+, \quad (6)
\]

admits a unique solution \(\sigma^(t, \nu, \lambda) \).*
Dimension Reduction of the Maximization Problem

Theorem

Suppose

\[\Phi(t, v) = \sup_{(\pi, \mu, \sigma) \in A(t, v)} \mathbb{E}^{t, v} \left[U(V_T^\pi) - \int_t^T c_u(\mu_u, \sigma_u) \, du \right], \quad (t, v) \in [0, T] \times \mathbb{R}^+ \]

admits a \(C^{1,2} \)-solution \(\Phi \), then it is also the solution of the optimal control problem

\[\Phi(t, v) = \sup_{(\pi, \lambda) \in A'(t, v)} \mathbb{E}^{t, v} \left[U(V_T^\pi) - \int_t^T c_u^*(\lambda_u) \, du \right], \quad (t, v) \in [0, T] \times \mathbb{R}^+, \quad (7) \]

where \(c^* \) is defined via

\[c^*(t, v, \lambda) := c(t, v, r + \lambda \sigma^*(t, v, \lambda), \sigma^*(t, v, \lambda)) = \min_{\{\sigma > 0: \mu = r + \lambda \sigma\}} c(t, v, \mu, \sigma). \quad (8) \]
Dimension Reduction of the Maximization Problem

Theorem

Suppose

$$
\Phi(t, v) = \sup_{(\pi, \mu, \sigma) \in A(t, v)} \mathbb{E}^{t,v} \left[U(V_T^\pi) - \int_t^T c_u(\mu_u, \sigma_u) \, du \right], \ (t, v) \in [0, T] \times \mathbb{R}^+
$$

admits a $C^{1,2}$-solution Φ, then it is also the solution of the optimal control problem

$$
\Phi(t, v) = \sup_{(\pi, \lambda) \in A'(t, v)} \mathbb{E}^{t,v} \left[U(V_T^\pi) - \int_t^T c^{*}_u(\lambda_u) \, du \right], \ (t, v) \in [0, T] \times \mathbb{R}^+, \ (7)
$$

where c^{*} is defined via

$$
c^{*}(t, v, \lambda) := c(t, v, r + \lambda \sigma^{*}(t, v, \lambda), \sigma^{*}(t, v, \lambda)) = \min_{\sigma > 0: \mu = r + \lambda \sigma} c(t, v, \mu, \sigma). \ (8)
$$
1 Introduction

2 Set-Up
- Investment Opportunities and Work Effort Choice
- Restating the Set-Up

3 Optimal Strategies
- HJB Equation
- Closed-Form Solutions

4 Implications of Results
- Log-Utility

5 Outlook
\[0 = \sup_{(\pi, \lambda) \in \mathbb{R} \times [0, \infty)} \Phi_t(t, v) + \Phi_v(t, v) v (r + \pi^S \lambda \sigma + [\pi^P + \beta \pi^S](\mu^P - r)) + \frac{1}{2} \Phi_{vv}(t, v) v^2 ([\pi^S \sigma]^2 + [\pi^P \sigma^P + \beta \pi^S \sigma_P]^2) - c^*(t, v, \lambda), \tag{9} \]

where \((t, v) \in [0, T) \times \mathbb{R}^+\), and \(U(v) = \Phi(T, v)\), for \(v \in \mathbb{R}^+\).

\[\Rightarrow \text{Maximizers } \pi^{P*}, \pi^{S*} \text{ and } \lambda^* \text{ of (9) by establishing the FOCs:} \]

\[\pi^{P*}(t, v) = -\frac{(\mu^P - r)}{v(\sigma^P)^2} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)} - \beta \pi^{S*}(t, v), \tag{10} \]

\[\pi^{S*}(t, v) = -\frac{\lambda^*(t, v)}{v \sigma} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)}, \]

where \(\lambda^*\) is the solution of the implicit equation

\[\lambda \frac{\Phi_v^2(t, v)}{\Phi_{vv}(t, v)} + c^*_\lambda(t, v, \lambda) = 0 \quad \text{for all } (t, v) \in [0, T] \times \mathbb{R}^+. \tag{11} \]
\[
0 = \sup_{(\pi, \lambda) \in \mathbb{R} \times [0, \infty)} \Phi_t(t, v) + \Phi_v(t, v) v (r + \pi^S \lambda \sigma + [\pi^P + \beta \pi^S] (\mu^P - r)) \\
+ \frac{1}{2} \Phi_{vv}(t, v) v^2 ([\pi^S \sigma]^2 + [\pi^P \sigma^P + \beta \pi^S \sigma_P]^2) - c^*(t, v, \lambda),
\]
where \((t, v) \in [0, T] \times \mathbb{R}^+, \) and \(U(v) = \Phi(T, v), \) for \(v \in \mathbb{R}^+ .\)

\[\Rightarrow \text{Maximizers } \pi^{P*}, \pi^{S*} \text{ and } \lambda^* \text{ of (9) by establishing the FOCs:}\]

\[
\pi^{P*}(t, v) = -\frac{(\mu^P - r)}{v(\sigma^P)^2} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)} - \beta \pi^{S*}(t, v),
\]
\[
\pi^{S*}(t, v) = -\frac{\lambda^*(t, v)}{v \sigma} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)},
\]

where \(\lambda^*\) is the solution of the implicit equation

\[
\lambda \frac{\Phi_v^2(t, v)}{\Phi_{vv}(t, v)} + c^*_\lambda(t, v, \lambda) = 0 \quad \text{for all } (t, v) \in [0, T] \times \mathbb{R}^+. \]
Substituting the maximizers (10) in the HJB (9) then yields:

\[
\Phi_t(t, v) + \Phi_v(t, v) v r - \frac{1}{2} (\lambda^*)^2 \frac{\Phi_v^2(t, v)}{\Phi_{vv}(t, v)} - \frac{1}{2} (\lambda_P)^2 \frac{\Phi_v^2(t, v)}{\Phi_{vv}(t, v)} - c^*(t, v, \lambda^*) = 0,
\]

(12)

where \(\lambda_P := \frac{\mu_P - r}{\sigma_P} \).

\[\rightarrow\]

Goal:

Solve equation (12) for a special choice of the utility and disutility functions.
Utility and Disutility Functions

The utility function U is assumed to be CRRA, in particular

$$U(v) = \begin{cases} \frac{v^{1-\gamma}}{1-\gamma}, & \text{for } \gamma > 0 \text{ and } \gamma \neq 1 \text{ --- "Power Utility"} \\ \log(v), & \text{for } \gamma = 1, \text{ --- "Log Utility"} \end{cases}$$

and the minimized disutility c^* satisfies:

$$c^*(t, v, \lambda) = \kappa v^{1-\gamma} \frac{\lambda^\alpha}{\alpha}, \quad \text{for } \gamma > 0,$$

where $\kappa = \text{inverse work productivity}$ and $\alpha = \text{disutility stress}$.

\Rightarrow Characterization of the executive via κ, α and γ.

Sascha Desmettre The Unconstrained Executive
Utility and Disutility Functions

The utility function U is assumed to be CRRA, in particular

$$U(v) = \begin{cases} \frac{v^{1-\gamma}}{1-\gamma}, & \text{for } \gamma > 0 \text{ and } \gamma \neq 1 \text{ „Power Utility“} \\ \log(v), & \text{for } \gamma = 1, \text{ „Log Utility“} \end{cases}$$

and the minimized disutility c^* satisfies:

$$c^*(t, v, \lambda) = \kappa v^{1-\gamma} \frac{\lambda^\alpha}{\alpha}, \text{ for } \gamma > 0,$$

where $\kappa = \text{inverse work productivity}$ and $\alpha = \text{disutility stress}$.

\Rightarrow Characterization of the executive via κ, α and γ.

Sascha Desmettre
The Unconstrained Executive
The Power Utility Case: $\gamma > 0$ and $\gamma \neq 1$

For $\alpha > 2$ and $\gamma \neq 1$ the separation approach

$$\Phi(t, \nu) = f(t) \frac{\nu^{1-\gamma}}{1-\gamma} \quad \text{with} \quad f(T) = 1$$

substituted in PDE (12) produces a Bernoulli ODE (for $n \neq 1$) of the form

$$\dot{f} = a_1 f + a_n f^n.$$

The solution is

$$f(t)^{1-n} = C e^{G(t)} + (1-n) e^{G(t)} \int_0^t e^{-G(s)} a_n \, ds,$$

where $G(t) = (1-n) \int_0^t a_1(s) \, ds$, and C is an arbitrary constant.
The Power Utility Case: $\gamma > 0$ and $\gamma \neq 1$

For $\alpha > 2$ and $\gamma \neq 1$ the separation approach

$$\Phi(t, \nu) = f(t) \frac{\nu^{1-\gamma}}{(1-\gamma)} \quad \text{with} \quad f(T) = 1$$

substituted in PDE (12) produces a Bernoulli ODE (for $n \neq 1$) of the form

$$\dot{f} = a_1 f + a_n f^n.$$

The solution is

$$f(t)^{1-n} = C e^{G(t)} + (1-n) e^{G(t)} \int_0^t e^{-G(s)} a_n \, ds,$$

where $G(t) = (1-n) \int_0^t a_1(s) \, ds$, and C is an arbitrary constant.
→ Solutions:

\[\lambda^*(t, \nu) = \left(\frac{1}{\kappa \gamma} f(t) \right)^{\frac{1}{\alpha-2}} \]

\[\pi^{P*}(t, \nu) = \frac{\mu^P - r}{\gamma (\sigma P)^2}, \quad \pi^{S*}(t, \nu) = \frac{\lambda^*(t, \nu)}{\gamma \sigma^*(t, \nu, \lambda^*(t, \nu))}, \]

\[\Phi(t, \nu) = \frac{\nu^{1-\gamma}}{1-\gamma} f(t), \]

where

\[f(t) = e^{(1-\gamma) \left(r + \frac{1}{2} \frac{\lambda^2 P}{\gamma} \right) (T-t)} \left(1 - \frac{(\alpha - 2) \left(\frac{1}{\kappa \gamma} \right)^{\frac{2}{\alpha-2}}}{\alpha \left(2 \gamma r + \frac{\lambda^2 P}{2} \right)} \left(e^{\frac{1-\gamma}{\alpha-2} \left(2 r + \frac{\lambda^2 P}{\gamma} \right) (T-t)} - 1 \right) \right)^{-\frac{\alpha-2}{2}}. \]
The Log Utility Case: $\gamma = 1$

For $\gamma = 1$ (log-utility) the solution Φ can be derived by assuming an additive structure of the form

$$\Phi(t, v) = \log(v) + \varphi(T - t).$$

→ **Solutions:**

$$\lambda^*(t, v) = \kappa\frac{1}{\alpha - 2}, \quad \pi^P(t, v) = \frac{\mu^P - r}{\sigma^P}^2, \quad \text{and} \quad \pi^S(t, v) = \frac{\lambda^*(t, v)}{\sigma^*(t, v)\lambda^*(t, v)},$$

and value function

$$\Phi(t, v) = \log(v) + \left[r + \frac{1}{2} \left(\frac{\mu^P - r}{\sigma^P} \right)^2 + \frac{\alpha - 2}{2\alpha} \kappa\frac{2}{\alpha - 2} \right] (T - t).$$

(19)
1 Introduction

2 Set-Up
 - Investment Opportunities and Work Effort Choice
 - Restating the Set-Up

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solutions

4 Implications of Results
 - Log-Utility

5 Outlook
Theoretical results are analyzed for practical insights:

- Investigate executive performance λ^* for sensitivities!
 (w.r.t.: work productivity κ^{-1}, disutility stress α)

- How much compensation is appropriate?
 (log-utility setting, indifference utility equivalence principle)

Parameters:

- **investments:**
 - risk-free rate: $r = 5\%$;
 - market portfolio: $\mu^P = 7\%$ and $\sigma^P = 20\%$;
 - own company: $\sigma^*(t, v, \lambda^*) = 40\%$;

- **executive:**
 - time horizon: $T = 10$ years;
 - initial wealth $v = \$5$ Mio.;
 - work productivity: $100 \leq \kappa^{-1} \leq 2000$;
 - disutility stress: $4 \leq \alpha \leq 6$;
Theoretical results are analyzed for practical insights:

- Investigate executive performance λ^* for sensitivities!
 (w.r.t.: work productivity κ^{-1}, disutility stress α)

- How much compensation is appropriate?
 (log-utility setting, indifference utility equivalence principle)

Parameters:

- investments:
 - risk-free rate: $r = 5\%$;
 - market portfolio: $\mu^P = 7\%$ and $\sigma^P = 20\%$;
 - own company: $\sigma^*(t, v, \lambda^*) = 40\%$;

- executive:
 - time horizon: $T = 10$ years;
 - initial wealth $v = \$5$ Mio.;
 - work productivity: $100 \leq \kappa^{-1} \leq 2000$;
 - disutility stress: $4 \leq \alpha \leq 6$;
Optimal Effort λ^* under Log-Utility

Figure: The optimal choice of the executive’s effort parameter λ^* graphed against $1/\kappa$ and α.
Indifference Utility Approach for the Log-Utility Case

The executive’s utility from his optimal personal investment and work effort decision is:

$$
\Phi(0, v) = \log v + \left[r + \frac{1}{2} (\lambda^P)^2 + \frac{1}{2} (\lambda^*)^2 \frac{\alpha - 2}{\alpha} \right] T.
$$

An outside investor’s utility who invests optimally in the executive’s portfolio strategy π^* (without spending work effort) is:

$$
\hat{\Phi}(0, v) = \log v + \left[r + \frac{1}{2} (\lambda^P)^2 + \frac{1}{2} (\lambda^*)^2 \right] T.
$$

⇒ Loss of utility: $\Phi(0, v) - \hat{\Phi}(0, v) = -\frac{1}{\alpha} (\lambda^*)^2 T$

⇒ Using the indifference utility argument $\Phi(0, v + \Delta v) = \hat{\Phi}(0, v)$ yields

$$
\Delta v = v \left(e^{\frac{(\lambda^*)^2 T}{\alpha}} - 1 \right) = v \left(e^{\frac{\lambda^2_{0} T}{\alpha} \left(\frac{\lambda^2_{0}}{\kappa} \right) \frac{2 - 2}{\alpha - 2}} - 1 \right).
$$

⇒ Loss of utility is compensated.
Executive’s “Fair” Pay Δv under Log-Utility

Figure: The executive’s fair up-front cash compensation Δv (based on indifference utility) graphed against $1/\kappa$ and α; with initial wealth $v = 5$ Mio. and $T = 10$.
1 Introduction

2 Set-Up
 - Investment Opportunities and Work Effort Choice
 - Restating the Set-Up

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solutions

4 Implications of Results
 - Log-Utility

5 Outlook
Extensions of the “base case”:

- Closed-form solutions exist also for an exponential utility of wealth;
- Include consumption and time preferences (consumption and work effort) in the present model:
 - Log utility case $\gamma = 1$: Closed-form solution preserved.
 - Power utility case $\gamma \neq 1$: Solve an inhomogeneous Bernoulli ODE; works for $\alpha = 2\gamma + 2$.

Towards the “constrained executive”:

- Develop dynamic “game” with company determining executive’s own-company shareholding and executive controlling effort and other investment decision → Modeled as a Stackelberg differential game;
- Determine optimal mixed compensation (cash, shares, and options);
Extensions of the “base case”:

- Closed-form solutions exist also for an exponential utility of wealth;
- Include consumption and time preferences (consumption and work effort) in the present model:
 - Log utility case $\gamma = 1$: Closed-form solution preserved.
 - Power utility case $\gamma \neq 1$: Solve an inhomogeneous Bernoulli ODE; works for $\alpha = 2\gamma + 2$.

Towards the “constrained executive”:

- Develop dynamic “game” with company determining executive’s own-company shareholding and executive controlling effort and other investment decision → Modeled as a Stackelberg differential game;
- Determine optimal mixed compensation (cash, shares, and options);
References

Desmettre, S., Gould, J. and Szimayer, A.
Own-Company Shareholding and Work Effort Preferences of an Unconstrained Executive.
Revised and resubmitted, 2010.

Cadenillas, A., Cvitanić, J. and Zapatero, F.
Leverage Decision and Manager Compensation with Choice of Effort and Volatility.

Core, J., Guay, W., Larcker, D.
Executive equity compensation and incentives: A survey.
Economic Policy Review 9, 2003.

M. Jensen and W. Meckling
Theory of the firm: Managerial behavior, agency costs and ownership structure.

S. Ross
The economic theory of agency: The principal’s problem.
American Economic Review, 63(2), 1973.