A LINTNER MODEL OF DIVIDENDS AND MANAGERIAL RENTS

Bart Lambrecht
University of Lancaster
Department of Accounting and Finance

Stewart C. Myers
MIT Sloan School of Management

Bachelier Finance Society Conference, Toronto, 25 June 2010
Introduction

- Lintner’s (1956) dividend model:

\[\Delta \text{Div}_t = \kappa + PAC (\text{Target Dividend}_t - \text{Div}_{t-1}) + e_t \]

- Model features:
 - target dividend equals (contemporaneous) net income times the payout ratio
 - dividend based on net income, but smoothed
 - transitory shocks are smoothed out
 - gradual adjustment to a permanent shock
- In absence of stock issues, payout smoothing means shocks in profitability are absorbed elsewhere:

$$\Delta D_t + Net\ Income_t = CAPEX_t + Payout_t$$ (1)

- Net debt is shock absorber if CAPEX determined by firm’s investment opportunities
- Consider market-value balance sheet:

\[
\begin{array}{c|c}
V_t(K) & (1 + \rho)D_{t-1} \\
R_t & \\
S_t & \\
V_t & V_t \\
\end{array}
\]

Interest on debt = \(\rho D_{t-1} \)
Annual rents = \(r_t \)
Dividends = \(d_t \)

\[S_t \geq \alpha [V_t - (1 + \rho)D_{t-1}] \]

- Budget constraint for period \(t \) (for fixed \(K \)):

\[
\rho D_{t-1} + d_t + r_t = K^{\phi} \pi_t + (D_t - D_{t-1})
\]
Related Literature

- Literature on dividends and payout:
 - Asymmetric info and signalling: Bhattachary (1979), Miller & Rock (1985), John & Williams (1985)

- Household consumption literature:
 - PIH: Friedman (1957), Hall (1978), Caballero (1990)
The Model

- Managers maximize NPV of their life-time utility:

\[U(r_t, r_{t-1}) = u(r_t - h r_{t-1}) = 1 - \frac{1}{\theta} e^{-\theta(r_t - h r_{t-1})} \equiv u(\hat{r}_t) \]

 - risk aversion \((u'' < 0)\)
 - habit formation \((1 > h \geq 0)\)
 - subjective discount factor: \(\omega \leq \beta \equiv \frac{1}{1+\rho}\)

- uncertainty: \(\pi_t = \mu \pi_{t-1} + \eta_t \quad (\eta_t \text{i.i.d.: } N(0, \sigma_\eta))\)
\[
\max E_t \left[\sum_{j=0}^{\infty} \omega^j U(r_{t+j}, r_{t+j-1}) \right]
\]

subject to the constraints:

\[
S_t \equiv d_t + \beta E_t [S_{t+1}] = \alpha [V_t - (1 + \rho) D_{t-1}]
\]

\[
D_t = D_{t-1}(1 + \rho) + d_t + r_t - K^\phi \pi_t
\]

\[
\lim_{j \to \infty} \left[\frac{D_{t+j}}{(1 + \rho)^j} \right] = 0
\]
Proposition 1 Dividends are tied to managers’ rents and given by: \(d_t = \left(\frac{\alpha}{1-\alpha} \right) r_t \equiv \gamma r_t \).

Proposition 2 Managers’ rents are given by:

\[
r_t = \beta h r_{t-1} + (1 - h \beta)(1 - \alpha) Y_t + c
\]

\[
c \equiv \left(\frac{\beta}{(1-\beta)\theta} \right) \ln \left(\frac{\beta}{\omega} \right) - \frac{(1 - \alpha)^2 \beta (1 - \beta)(1 - h \beta)^2}{(1 - \beta \mu)^2} \theta \frac{\sigma \eta^2 K^{2\phi}}{2}
\]

where \(Y_t \) is the firm’s “permanent income”.

\[
Y_t = \rho \beta \sum_{j=0}^{\infty} \beta^j K^\phi E_t [\pi_{t+j}(\eta_{t+j})] - \rho D_{t-1}
\]
Optimal dividend policy

Corollary 3 The firm’s dividend policy is given by the following partial adjustment model:

\[d_t - d_{t-1} = (1 - \beta h)(aY_t - d_{t-1}) + \kappa \]

(4)

\[\kappa \equiv \frac{\alpha c}{1-\alpha} = \text{dissavings} - \text{precautionary savings} \]

\[\text{dissavings} \equiv \left(\frac{\alpha \beta}{(1-\alpha)(1-\beta)\theta} \right) \ln \left(\frac{\beta}{\omega} \right) \]

\[\text{precautionary savings} \equiv \alpha(1-\alpha) \left(\frac{\beta(1-\beta)(1-h\beta)^2}{(1-\beta\mu)^2} \right) \frac{\theta}{2} \sigma^2 \eta^2 K^{2\phi} \]
Dividend Smoothing

- PAC \equiv [1 - \beta h] decreases with:
 - habit persistence \(\frac{\partial PAC}{\partial h} < 0 \)
 - the market discount factor \(\frac{\partial PAC}{\partial \beta} < 0 \)

- Property:

\[
\Delta d_t = h\Delta d_{t-1} - \frac{\alpha \rho c}{1 - \alpha} + \alpha (1 - \beta h)\nu_t
\]

\[
var(\Delta d_t) = \Lambda^2 \alpha^2 \left[K^{2\phi} \sigma_\eta^2 \right]
\]

where \(\Lambda = \frac{(1-\beta h)(1-\beta)}{1-\beta \mu} < 1 \) and \(\nu_t \) is white noise
\[\frac{\partial Y_t}{\partial \tau_t} = \rho \beta \quad (\approx 0.05) \]
\[\frac{\partial Y_t}{\partial \eta_t} = \frac{\rho \beta}{1 - \mu \beta} \quad (= 1 \text{ for } \mu = 1) \]
\[\frac{\partial d_t}{\partial \tau_t} = PAC \alpha \rho \beta \quad (\approx 0.01) \]
\[\frac{\partial d_t}{\partial \eta_t} = PAC \alpha \left(\frac{\rho \beta}{1 - \beta \mu} \right) \quad (\approx 0.3 \text{ for } \mu = 1) \]
\[\frac{\partial [D_t - D_{t-1}]}{\partial \tau_t} = (1 - \beta h)\rho \beta - 1 < 0 \]
\[\frac{\partial [D_t - D_{t-1}]}{\partial \eta_t} = \frac{(1 - \beta h)\rho \beta}{1 - \beta \mu} - 1 < 0 \quad (5) \]

Habit formation and risk aversion each induce smoothing.
Dividends and stock prices

\[S^e_t = \sum_{j=1}^{\infty} E_t[d_{t+j}] \beta^j = \frac{\alpha Y_t}{\rho \beta} - d_t \equiv S_t - d_t \]

- Announcing an unanticipated dividend change \(\Delta d_t \) causes:

\[\Delta S_t = \frac{\Delta d_t}{(1 - \beta h) \rho \beta} \]

(6)
Optimal Investment Policy

- K financed by debt and equity issue: $K = \Delta D + \Delta S$

- But: $\Delta S = \alpha (\Delta V - \Delta D)$

- Hence: $\Delta D(K) \equiv \frac{K - \alpha \Delta V}{1 - \alpha}$

- Managers choose K in order to maximize:

$$\max_K \sum_{j=0}^{\infty} \omega^j E_t[u(\hat{r}_{t+j})] \quad \text{where} \quad \hat{r}_{t+j} \equiv r_{t+j} - hr_{t+j-1}$$
Proposition 4 The managers' optimal investment policy

K is the solution to:

$$
\phi K^{\phi-1} \sum_{j=1}^{\infty} \beta^j E_t[\pi_{t+j}] - 1 = \frac{\theta \sigma \eta^2 (1 - \alpha)^2 \beta (1 - h\beta) \phi K^{2\phi-1}}{(1 - \beta \mu)^2}
$$

- Risk averse managers underinvest
- Habit formation mitigates underinvestment
Conclusions and Empirical Implications

- Investment, debt and payout policy modeled jointly
- Agency model of payout: managers’ rents tied to dividends
- Managers’ risk aversion and habit formation create desire to smooth rents
- Persistent and transitory earnings affect dividends differently
- We obtain Lintner model with following features:

 • PAC decreases with h and β

 • target dividend payout increases with investor protection

 • constant term increases with impatience and h, but decreases with risk aversion and earnings volatility

 • net debt absorbs shocks and CAPEX

- Risk averse managers under-invest (absent private benefits)
- Habit formation mitigates underinvestment