Ambiguity Aversion in Real Options:

6th World Congress of the Bachelier Finance Society

Sebastian Jaimungal
sebastian.jaimungal@utoronto.ca

Department of Statistics and Mathematical Finance Program,
University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

June 22–26, 2010
The Real Option Problem

- Classical work of **McDonald & Siegel (86)** assigns the value

\[f_t = \mathbb{E}_t \left[e^{-\rho(T-t)} \left(P_T - I \right)_+ \right] \]

...to the option to invest in a project at \(T \)
- \(P_t \) – value of a project if invested in at time \(t \)
- \(I \) – the cost of the investment
- \(\rho \) – discount rate
- If **early investment** is allowed (e.g. qrtly or mthly), then

\[f_t = \sup_{\tau \in \mathcal{T}} \mathbb{E}_t \left[e^{-\rho(\tau-t)} \left(P_\tau - I \right)_+ \right] \]

- \(\mathcal{T} \) – a set of admissible stopping times
The Real Option Problem

- P_t often assumed **spanned** by a traded asset – mostly **unrealistic**
 - Spanning allows the project to effectively be traded and therefore valued using discounted expectations
- Instead view P_t as **strongly correlated** to a **tradable asset** S_t
- Two key questions addressed here:
 - How to value the option on P_t by trading in S_t?
 - Will use **Utility indifference pricing**
 - Henderson & Hobson (02) and Henderson (07) for perpetual version
 - An agent may have a good model for S_t but not P_t… how to account for this **ambiguity**?
 - **Knightian Uncertainty / ambiguity aversion**
 - **Robustness Approach:** Anderson, Hansen, & Sargent (99); Uppal & Wang (03); Maenhout (04); and J. & Sigloch (09)
 - **Recursive multiple priors:** Epstein & Wang (94) Chen & Epstein (02) extension of Gilboa & Schmeidler (89)
Utility Indifference Pricing

- Consider:
 - Suppose want to value the risk Y received at T
 - Agent's utility is exponential $u(x) = -\frac{1}{\gamma} e^{-\gamma x}$
 - Agent's initial wealth is x and risk-free rate is r

- Basic utility indifference valuation:
 1. Invest all of x in bank account:
 \[V(x) = -\frac{1}{\gamma} e^{-\gamma x} e^{rT} \]
 2. Invest $x - v$ in bank account and receive Y at T:
 \[U(x) = \mathbb{E}[u((x - v)e^{rT} + Y)] = V(x - v)\mathbb{E}[e^{-\gamma Y}] \]
 3. Indifference value v solves
 \[V(x) = U(x) \Rightarrow v = -\frac{1}{\gamma} e^{-rT} \ln \mathbb{E}[e^{-\gamma Y}] \]
Utility Indifference Pricing

- Invest optimally in S_t **without option** to invest in project

$$U(x) = \sup_{\pi \in \mathcal{A}} \mathbb{E}[u(X_T)]$$

 - classical Merton (69) problem, admits explicit solution

- Invest optimally in S_t **with option** to invest in project
 - Upon exercise, receive option value, and revert to Merton:

$$U(x, P; a) = \sup_{\tau \in \mathcal{T}} \sup_{\pi \in \mathcal{A}} \mathbb{E}[V(\tau, X_\tau + a(P_\tau - I)_+)]$$

$$V(t, x) = \sup_{\pi \in \mathcal{A}} \mathbb{E}[u(X_T)|X_t = x]$$

 - Henderson (07) solved the perpetual version of this problem
Indifference value \(v \) of option to invest in project defined as

\[
U(x, P; 0) = U(x - v, P; 1)
\]
Non-traded project value P_t and correlated traded equity S_t satisfy

$$dP_t = P_t \left(\nu dt + \eta dW_t^P \right), \quad dS_t = S_t \left(\mu dt + \sigma dW_t^S \right)$$

with $d[W^P, W^S]_t = \rho dt$.

For risk-neutral valuation can use the **minimal entropy martingale measure**:

$$dP_t = P_t \left(\hat{\nu} dt + \eta d\hat{W}_t^P \right), \quad dS_t = S_t \left(r dt + \sigma d\hat{W}_t^S \right)$$

with $\hat{\nu} = \nu - \rho \eta \frac{\mu - r}{\sigma}$ and $d[\hat{W}^P, \hat{W}^S]_t = \rho dt$

The **MEMM** appears in indifference valuation as well

Ambiguity adjusted MEMM appears for ambiguity-averse agents
Utility Indifference Pricing

- Let X_t denote the investor’s wealth
- Let π_t denote the dollar amount invested in the tradable asset S_t
- Let \mathcal{A} denote the set of admissible strategies

$$\mathcal{A} = \left\{ \pi_t \mid \text{self financing and} \quad \int_0^T \pi_t^2 \, ds < +\infty \right\}$$

- Self-financing strategies imply

$$dX_t = \left((\mu - r)\pi_t + r X_t \right) dt + \sigma \pi_t \, dW_t^S$$
Dynamic programming principle leads to the HJB eqn

\[
\begin{aligned}
\partial_t U + \max_{\pi} \mathcal{L}_\pi U &= 0 \\
U(t, b(x), P; a) &= V(t, x + a(P - I)_+)
\end{aligned}
\]
Utility Indifference Pricing

- Assume exp. utility: $u(x) = -\frac{1}{\gamma} e^{-\gamma x}$ then wealth factors:

$$V(t, x) = u \left(x e^{r(T-t)} \right) e^{-\frac{1}{2} \lambda^2 (T-t)}$$

$$U(t, x, e^y) = V(t, x) G^\beta(t, y)$$

where $\lambda = (\mu - r)/\sigma$ is the market price of risk
and $\beta = (1 - \rho^2)^{-1}$ is the power transform coefficient

- G solves a linear complementarity problem

$$\begin{cases}
\partial_t G + \mathcal{L} G & \leq 0, \\
\ln G(t, y) & \geq h(t, y), \\
(\partial_t G + \mathcal{L} G) \cdot (\ln G(t, y) - h(t, y)) & = 0,
\end{cases}$$

where

$$h(t, y) = a \frac{\gamma}{\beta} (e^y - K)_+ e^{r(T-t)}, \quad \text{and,} \quad \mathcal{L} = \hat{\nu} \partial_y + \frac{1}{2} \eta^2 \partial_{yy}$$
Since wealth factors, the **indifference value** is simply:

\[
v(t, y) = \frac{\beta}{\gamma} e^{-r(T-t)} \ln G(t, y)
\]

\(v(t, y)\) then satisfies a **non-linear complementarity problem**:

\[
\begin{align*}
\partial_t v + \mathcal{L} v - \frac{1}{2} \eta^2 \frac{\gamma}{\beta} e^{r(T-t)} (\partial_y v)^2 & \leq r v, \\
(\partial_t v + \mathcal{L} v - \frac{1}{2} \eta^2 \frac{\gamma}{\beta} e^{r(T-t)} (\partial_y v)^2 - r v) \\
\cdot (v(t, y) - (e^y - K)_+) & = 0.
\end{align*}
\]

As \(\gamma \downarrow 0\), the non-linearity disappears

Recovers the risk-neutral American option price
The effect of **risk-aversion** on **exercise policy**
Utility Indifference Pricing

The effect of risk-aversion on option value

![Graph showing the relationship between risk-aversion and option value.](image)
Agent's may lack confidence in their model and this uncertainty affects decisions.

As illustrated in the classical Ellsberg paradox:

- You are given 40 red marbles; and a total of 60 black and green marbles.
- Mix all marbles, 1 chosen at random.
- Most investors prefer A to B:
 - A: receive $100 if red
 - B: receive $100 if black

- Most investors prefer D to C:
 - C: receive $100 if red or green
 - D: receive $100 if black or green

Inconsistent with maximizing expected utility.
Resolved through including ambiguity aversion.
Agent’s may **lack confidence** in their model
- Knightian Uncertainty viewed as **ambiguity aversion**
- Use ideas from **Robust Portfolio Optimization**
 - Agent has some confidence in a **reference measure** \mathbb{P}
 - Agent is willing to consider a class of **candidate measures** \mathbb{Q}
 - Agent then solves the problem

$$V(x, P, S) = \sup_{\pi \in A} \inf_{Q \in Q} \mathbb{E}_x^Q_{\pi,P,S} \left[u(X_T^\pi) + \frac{1}{\varepsilon} h(Q|\mathbb{P}) \right].$$

- $h(Q|\mathbb{P})$ is a **penalty function**... e.g. relative entropy
- The parameter ε acts as a measure of ambiguity aversion
 - As $\varepsilon \downarrow 0$ reference measure is picked out
 - $\varepsilon \uparrow +\infty$ all candidates measures are equal
Robust Utility Indifference

- For relative entropy: \(h(Q|P) = \mathbb{E}^{Q}[\ln \frac{dQ}{dP}] = \mathbb{E}^{Q}[\int_0^T \mu'_s \Sigma^{-1} \mu_s ds] \)

- Instead use scaled relative entropy similar to in J. & Sigloch (09):

\[
U^a(t, x, P, S) = \sup_{\tau \in \mathcal{T}_t} \sup_{\pi \in \mathcal{A}} \inf_{Q \in \mathcal{Q}} \mathbb{E} \left[V(\hat{\tau}, X_{\hat{\tau}}^\pi + a(P_{\hat{\tau}} - I)_+, P_{\hat{\tau}}, S_{\hat{\tau}}) - \frac{1}{\epsilon} \int_0^{\hat{\tau}} U^a(s, X_s^\pi, P_s, S_s) \mu'_s \Sigma^{-1} \mu_s ds \right],
\]

where, \(\hat{\tau} = \tau \land T \) and

\[
V(t, x, P, S) = \sup_{\pi \in \mathcal{A}} \inf_{Q \in \mathcal{Q}} \mathbb{E} \left[u(X_T^\pi) - \frac{1}{\epsilon} \int_t^T V(s, X_s^\pi, P_s, S_s) v_s^Q \Sigma^{-1} \mu_s^Q ds \right].
\]
Robust Utility Indifference

- The **Dynamic programming principle** leads to the HJB eqn

\[
\begin{align*}
\partial_t U + \max_{\pi, \mu} \left(\mathcal{L}_{\pi, \mu} U - \frac{1}{\varepsilon} \mu' \Sigma^{-1} \mu U \right) &= 0 \\
U(t, b(x), P; a) &= V(t, x + a(P - l)_+) \\
\partial_t V + \max_{\pi, \mu} \left(\mathcal{L}_{\pi, \mu} V - \frac{1}{\varepsilon} \mu' \Sigma^{-1} \mu V \right) &= 0 \\
V(T, x) &= u(x)
\end{align*}
\]

- The scaling of relative entropy allows explicit solutions the DPE
- Equations are similar to previous case with modified parameters
Robust Utility Indifference

- The ansatz

\[V(t, x) = u \left(x e^{r(T-t)} \right) e^{-\frac{1}{2} \lambda^2 (T-t)}, \quad U(t, x, e^y) = V(t, x) G^\beta(t, y) \]

solves the resulting dynamic programming equations

- \(\lambda^2 = \frac{1}{1+\varepsilon} \left(\frac{\mu-r}{\sigma} \right) \) is **ambiguity adjusted market price of risk**

- The power transform coefficient \(\beta \) also depends on the ambiguity aversion parameter

- **Indifference value** \(v(t, y) = \frac{\beta}{\gamma} e^{r(T-t)} \ln G(t, y) \) solves a non-linear complimentary problem

\[
\begin{aligned}
\partial_t v + \mathcal{L}_\varepsilon v - \frac{1}{2} \eta^2 \frac{\gamma}{\beta} e^{r(T-t)} (\partial_y v)^2 & \leq r v, \\
v(t, y) & \geq (e^y - K)_+, \\
\left(\partial_t v + \mathcal{L}_\varepsilon v - \frac{1}{2} \eta^2 \frac{\gamma}{\beta} e^{r(T-t)} (\partial_y v)^2 - r v \right) \\
\cdot (v(t, y) - (e^y - K)_+) & = 0.
\end{aligned}
\]
The effect of **ambiguity-aversion** on **exercise boundary**
Robust Utility Indifference

The effect of **ambiguity-aversion** on **option price**

![Graph showing the effect of ambiguity-aversion on option price](image-url)
Robust Utility Indifference

- **Ambiguity and Risk aversion** are similar but distinct
- As $\gamma \downarrow 0$ non-linearity in LC problem is removed but dependence on ε remains through the *ambiguity adjusted MEMM drift*

$$\hat{\nu} = \nu - \frac{1}{1 + \varepsilon \rho \eta} \frac{\mu - r}{\sigma}$$

- As $\varepsilon \downarrow 0$, $\hat{\nu}$ decreases to **MEMM drift**
- As $\varepsilon \uparrow +\infty$, $\hat{\nu}$ increases to $\nu - \text{reference measure drift}$

- An agent may be risk-neutral but severely ambiguity averse
Conclusions

- Project value modeled as non-traded asset
- Correlated traded asset provides partial hedge
- Use utility indifference to value option
- Risk-aversion affects option value and exercise strategy in non-linear way
- Ambiguity aversion can be incorporated through a scaled entropic penalty
- Ambiguity also affects option value and exercise strategy in non-linear way
- Ambiguity and risk aversion are similar but distinct factors in explaining agent's behavior
Thank you for your attention!!

Sebastian Jaimungal

sebastian.jaimungal@utoronto.ca
University of Toronto, Toronto, Canada

http://www.utstat.utoronto.ca/sjaimung