A Multiname First Passage Model for Credit Risk

Adam Metzler
(Joint with Don L. McLeish)

Department of Applied Mathematics
University of Western Ontario
ametzle@uwo.ca

Bachelier Congress - June 25, 2010
The Black-Cox Model

- Firm value a geometric Brownian motion
 \[S_t = S_0 \exp(\mu t + \sigma W_t) \]

- Default threshold deterministic
 \[B_t = B_0 \exp(\lambda t) \]

- Default is first passage time of \(S_t \) to \(B_t \)
 \[\tau = \inf \{ t \geq 0 : S_t \leq B_t \} \]
A Closer Look at Black-Cox

- Firms default at FPT of “credit quality” to zero

 \[X_t^i = \log \left(\frac{S_t^i}{B_t^i} \right) = x_i + \mu_i t + \sigma_i W_t^i \]

- \(W^i \) correlated BM

- \(\mu_i, \sigma_i \) represent trend and volatility in credit quality

- Systematic risk - correlated “noise” about trend
Our Framework

- Model dynamics of credit quality as
 \[dX^i_t = \mu_i(M_t) \, dt + \sigma_i(V_t) \, dW^i_t \]

- \(M_t, V_t \) correlated processes (unobserved)

- \(\mu_i, \sigma_i \) deterministic functions

- \(W^i \) a BM independent of everything

- Default time \(\tau_i \) is FPT of \(X^i \) to zero
Intuition (Heuristic)

\[
X_{t+h}^i - X_t^i \approx N\left(h\mu_i(M_t), h\sigma_i^2(V_t)\right)
\]

- Systematic factors “set the tone” for a day’s operations

- \(X_{t+h}^i - X_t^i\) and \(X_{t+h}^j - X_t^j\) approximately independent

 - Once the tone has been set, obligors operate independently

- Continuous-time analogue of factor models
General Properties

\[X_t^i = X_0^i + \int_0^t \mu_i (M_s) \, ds + \int_0^t \sigma_i (V_s) \, dW_s^i \]

- In general credit qualities not Markovian
- Credit qualities are continuous
 - \(M_t, V_t \) may have jumps
- Credit qualities are conditionally independent
Default Process

- Define default process

\[D_N(t) := \frac{1}{N} \sum_{i=1}^{N} I(\tau_i \leq t) \]

- When it exists, call

\[D(t) := \lim_{N \to \infty} D_N(t) \]

the asymptotic proportion of defaults
Homogeneous Portfolios

▶ All obligors influenced by systematic factors in same way

\[dX^i_t = \mu(M_t) \, dt + \sigma(V_t) \, dW^i_t \]

▶ Asymptotic proportion of defaults is

\[D(t) = P(\tau_i \leq t | \mathcal{H}_t) \]

▶ \(\mathcal{H}_t \) the filtration generated by \(\{ M_s, V_s : 0 \leq s \leq t \} \)

▶ \(D(t) \) is conditional default probability of an arbitrary obligor
A Linear Model

\[X_t^i = x_0 + Mt + \sqrt{V}W_t^i \]

- \(M, V \) random variables; \(x_0 \) constant

- \(x_0 > 0 \) a constant

- Closed-form for default rate

 \[D(t) = h(M, V, x_0, t) \]
Calibration Results

<table>
<thead>
<tr>
<th></th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Market</td>
<td>Model</td>
<td>Market</td>
</tr>
<tr>
<td>0-3%</td>
<td>24.38</td>
<td>24.43</td>
<td>40.44</td>
</tr>
<tr>
<td>3-7%</td>
<td>90</td>
<td>90.2</td>
<td>209</td>
</tr>
<tr>
<td>7-10%</td>
<td>19</td>
<td>17.5</td>
<td>46</td>
</tr>
<tr>
<td>10-15%</td>
<td>7</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>15-30%</td>
<td>3.5</td>
<td>2.5</td>
<td>5.75</td>
</tr>
<tr>
<td>30-100%</td>
<td>1.73</td>
<td>0.38</td>
<td>3.12</td>
</tr>
<tr>
<td>CDX</td>
<td>35</td>
<td>34.8</td>
<td>45</td>
</tr>
</tbody>
</table>

- 8 model parameters
- CDS spreads *not* included in calibration
Interesting Observations

- \[X_t^i = x_0 + Mt + \sqrt{V}W_t^i \]

- Correlation between \(M \) and \(V \) exceeds 80% in both cases
 - 2006 and 2008

- Large portfolio losses (senior tranches impaired) characterized by
 - \(M << 0 \) and \(V \approx 0 \)

- “Low-volatility” market crashes
Interpreting “Low-Volatility” Crashes

- Condition upon \((M, V) = (m, v)\)

\[
X_t^i = x_0 + mt + \sqrt{v}W_t^i
\]

- Now send \(v \to 0\)

\[
X_t^i \approx x_0 + mt
\]

- If \(m < 0\) default with near certainty at \(t^* = -\frac{x_0}{m}\)

 - \(h(m, v, x_0, \cdot)\) converges to degenerate c.d.f. as \(v \to 0\)
$h(-0.375, 0.003, 1.8, \cdot)$
Interpreting the Systematic Factors

\[X_t^i = x_0 + Mt + \sqrt{V}W_t^i \]

\[X_t^i \sim Mt \text{ as } t \to \infty \]

- \(M \) is the “dominant long-term” force

- \(V \) modulates influence of idiosyncratic component
 - Downgraded during “bad times”
 - Stochastic “correlation” factor?
Calibrated Densities - M

<table>
<thead>
<tr>
<th></th>
<th>0-3%</th>
<th>3-7%</th>
<th>7-10%</th>
<th>10-15%</th>
<th>15-30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>24.4</td>
<td>90</td>
<td>19</td>
<td>7</td>
<td>3.5</td>
</tr>
<tr>
<td>2008</td>
<td>67.4</td>
<td>727</td>
<td>403</td>
<td>204</td>
<td>115</td>
</tr>
</tbody>
</table>
Calibrated Densities - $\log(V)$

- Idiosyncratic risk has been “priced out”
Adding Time Dynamics

\[dX^i_t = M_t dt + \sqrt{V_t} dW^i_t \quad X^i_0 = x_0 \]

- \(M_t, V_t \) processes with integrable sample paths
- \(x_0 > 0 \) constant

\[X^i_{t+h} - X^i_t \approx^d N (hM_t, hV_t) \]
Conditional Default Probabilities

- Condition upon realized paths of \((M, V)\), say \((m_t, v_t)\).

\[
X^i_t = x_0 + \int_0^t m_s ds + \int_0^t \sqrt{v_s} dW^i_s
\]

\[
\leq x_0 + \int_0^t m_s ds + W^i \left(\int_0^t v_s ds \right)
\]

\[
= a_t + W^i(b_t)
\]

- Default at first passage of TCBM to non-linear barrier

- \(D(t)\) solves Volterra equation (first kind)
Example

Model M_t, V_t as stationary mean-reverting diffusions

\[dM_t = \theta (\mu - M_t) \, dt + \nu (M_t) \, dZ^1_t \]

\[dV_t = \alpha (\beta - V_t) \, dt + \xi (V_t) \, dZ^2_t \]

Z^1, Z^2 correlated Brownian motion

\[\nu(\cdot) \text{ chosen so that } M_t \text{ is Laplace} \]

\[\xi(\cdot) \text{ chosen so that } V_t \text{ is log-Laplace} \]
Calibration Results - Diffusion Model (2008)

<table>
<thead>
<tr>
<th></th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Market</td>
<td>Model</td>
<td>Market</td>
</tr>
<tr>
<td>0-3 %</td>
<td>67.38</td>
<td>64.71</td>
<td>70.5</td>
</tr>
<tr>
<td>3-7 %</td>
<td>727</td>
<td>727</td>
<td>780</td>
</tr>
<tr>
<td>7-10%</td>
<td>403</td>
<td>376</td>
<td>440</td>
</tr>
<tr>
<td>10-15%</td>
<td>204</td>
<td>223</td>
<td>248</td>
</tr>
<tr>
<td>15-30%</td>
<td>115</td>
<td>115</td>
<td>128.5</td>
</tr>
</tbody>
</table>

- 10 model parameters
- Data obtained from Krekel (2008)
- Implied CDS curve is hump-shaped
Comments

- M_t, V_t driven by correlated BM
 - Correlation exceeds 98% in both cases (2006 and 2008)
- Large portfolio losses (senior tranches impaired) characterized by prolonged periods where
 - $M_t \ll 0$ and $V_t \approx 0$
- Unlike linear model, economy can recover
 - Observe cyclical behaviour
The Importance of Time Dynamics

Cumulative Proportion of Defaults

M

V

Cumulative Proportion of Defaults
\[X_t^i = x_0 + \int_0^t M_s \, ds + \int_0^t \sqrt{V_s} \, dW_s^i \]
Calibration Results - Linear Model (2006)

<table>
<thead>
<tr>
<th></th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Market</td>
<td>Model</td>
<td>Market</td>
</tr>
<tr>
<td>0-3 %</td>
<td>24.38</td>
<td>24.43</td>
<td>40.44</td>
</tr>
<tr>
<td>3-7 %</td>
<td>90</td>
<td>90.2</td>
<td>209</td>
</tr>
<tr>
<td>7-10%</td>
<td>19</td>
<td>17.5</td>
<td>46</td>
</tr>
<tr>
<td>10-15%</td>
<td>7</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>15-30%</td>
<td>3.5</td>
<td>2.5</td>
<td>5.75</td>
</tr>
<tr>
<td>30-100%</td>
<td>1.73</td>
<td>0.38</td>
<td>3.12</td>
</tr>
<tr>
<td>CDX</td>
<td>35</td>
<td>34.8</td>
<td>45</td>
</tr>
</tbody>
</table>
Calibration Results - Diffusion Model (2006)

<table>
<thead>
<tr>
<th></th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Market</td>
<td>Model</td>
<td>Market</td>
</tr>
<tr>
<td>0-3 %</td>
<td>24.38</td>
<td>22.30</td>
<td>40.44</td>
</tr>
<tr>
<td>3-7 %</td>
<td>90</td>
<td>89.4</td>
<td>209</td>
</tr>
<tr>
<td>7-10%</td>
<td>19</td>
<td>19.1</td>
<td>46</td>
</tr>
<tr>
<td>10-15%</td>
<td>7</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>15-30%</td>
<td>3.5</td>
<td>3.5</td>
<td>5.75</td>
</tr>
<tr>
<td>30-100%</td>
<td>1.73</td>
<td>0.36</td>
<td>3.12</td>
</tr>
<tr>
<td>CDX</td>
<td>35</td>
<td>33.6</td>
<td>45</td>
</tr>
</tbody>
</table>
Calibration Results - Linear Model (2008)

<table>
<thead>
<tr>
<th></th>
<th>5Y</th>
<th></th>
<th>7Y</th>
<th></th>
<th>10Y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Market</td>
<td>Model</td>
<td>Market</td>
<td>Model</td>
<td>Market</td>
<td>Model</td>
</tr>
<tr>
<td>0-3 %</td>
<td>67.38</td>
<td>65.90</td>
<td>70.5</td>
<td>70.79</td>
<td>73.5</td>
<td>71.76</td>
</tr>
<tr>
<td>3-7 %</td>
<td>727</td>
<td>733</td>
<td>780</td>
<td>859</td>
<td>895.5</td>
<td>894.7</td>
</tr>
<tr>
<td>7-10%</td>
<td>403</td>
<td>355</td>
<td>440</td>
<td>417</td>
<td>509</td>
<td>430</td>
</tr>
<tr>
<td>10-15%</td>
<td>204</td>
<td>219</td>
<td>248</td>
<td>265</td>
<td>282</td>
<td>277</td>
</tr>
<tr>
<td>15-30%</td>
<td>115</td>
<td>100</td>
<td>128.5</td>
<td>128.1</td>
<td>139.5</td>
<td>141.2</td>
</tr>
</tbody>
</table>
Calibration Results - Diffusion Model (2008)

<table>
<thead>
<tr>
<th></th>
<th>5Y Market</th>
<th>5Y Model</th>
<th>7Y Market</th>
<th>7Y Model</th>
<th>10Y Market</th>
<th>10Y Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 %</td>
<td>67.38</td>
<td>64.71</td>
<td>70.5</td>
<td>70.46</td>
<td>73.5</td>
<td>71.89</td>
</tr>
<tr>
<td>3-7 %</td>
<td>727</td>
<td>727</td>
<td>780</td>
<td>842</td>
<td>895.5</td>
<td>899.6</td>
</tr>
<tr>
<td>7-10%</td>
<td>403</td>
<td>376</td>
<td>440</td>
<td>437</td>
<td>509</td>
<td>452</td>
</tr>
<tr>
<td>10-15%</td>
<td>204</td>
<td>223</td>
<td>248</td>
<td>263</td>
<td>282</td>
<td>282</td>
</tr>
<tr>
<td>15-30%</td>
<td>115</td>
<td>115</td>
<td>128.5</td>
<td>129.3</td>
<td>139.5</td>
<td>139.1</td>
</tr>
</tbody>
</table>